Implementing a timer-based TCP
congestion control in the Linux
kernel

Bjelke, Christoffer
Limi, Andreas

Thesis submitted for the degree of
Master in Informatics: Programming and System
Architecture
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Autumn 2023

Implementing a timer-based
TCP congestion control in the
Linux kernel

Bjelke, Christoffer
Limi, Andreas

© 2023 Bjelke, Christoffer , Limi, Andreas
Implementing a timer-based TCP congestion control in the Linux kernel
http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

This thesis presents the design, development and evaluation of a novel
pluggable timer-based TCP congestion control module in the Linux kernel.
The conceptual basis for the congestion control is derived from an
unpublished paper at the time of writing. The resulting implementation is
fundamentally different from traditional TCP congestion control, as it does
not exclusively rely on ACK-clocking or a congestion window. Instead, it
is based on time, where all packet transmissions occur as a consequence
of a timer expiration in Slow Start and Congestion Avoidance. The
timeout values are calculated from the current sending rate and congestion
control algorithm. In essence, this process interpolates the transmission
behavior of traditional TCP congestion control, in addition to meticulously
distributing packets across time, yielding smooth traffic patterns.

The evaluation of the implementation was conducted in an isolated single
flow environment. The findings provided insights into its capabilities and
limitations, highlighting areas of further research on implementing timer-
based congestion control.

Preface

Acknowledgements

We would like to extend our gratitude towards our supervisors, Michael
Welzl and Safiqul Islam, for their guidance and feedback throughout the
project. Their knowledge and insights, both in the field of TCP and in the
field of research, have been invaluable to us.

We would like to thank the Department of Informatics at the University
of Oslo for the opportunity to carry out this project. The department’s
facilities and welcoming atmosphere have played a significant role in our
academic pursuits and have been central to forming strong friendships and
a supportive network.

Getting started with Linux kernel development can be a daunting task. We
would like to thank Joakim Misund for an insightful conversation in the
early stages of the project.

During our time working on this project, we have benefited greatly from
the support, discussions, and feedback from our significant others, family,
friends, and fellow students.

ii

Contents

1 Introduction

1.1 Problem statement
1.2 Contributions
1.3 Research questions
14 Organization.
1.5 Collaboration

2 Background

21 Congestion
2.2 The Transmission Control Protocol (TCP)
221 Overview
222 CongestionControl
223 Enhancements.
224 Congestion Control Algorithms
23 Pacing
24 TCPinthe Linuxkernel

3 Timer-based TCP

3.1 Generaldesign.
3.2 Corefunctions
3.3 Differences from TCP

4 Linux implementation

41 Scope

42 Strategies

43 Modifying the network stack

iii

12
15

17

20

31

32

34

37

39

43.1
432

Event handlercallback
Disable sending triggers

44 TBTCPmodule

441
442
443
444

Privatefields
Utility o
TCPcallbacks

Other functions

4.5 Implementing floating-point support.

4.6 Configurable module parameters

Implementation assessment

51 Testbed e

5.2 Testing and measurementtools

53 Experiments L

53.1 Pacingbehaviour
53.2 Stallinglogic.
54 Backoff

5.5 Pursuing peak throughput

5.5.1
552
55.3
55.4

Timeroverhead
iPerf buffersizes
Experiencing loss without reaching link speed

ACKProcessing

5.6 Optimizations

5.6.1

Conclusion

Double packetdrops

6.1 Researchfindings

6.2 Furtherwork.

6.2.1
6.2.2
6.2.3
6.24

Evaluation in a heterogenous flow environment . . .
Implementing loss recovery
Pace from hardware

Minimizing the impact of pacing overhead

6.3 Recommendations

iv

59
59
60

61
61
64

69

70
70
73
76
76

78
78

82

82

6.4 Closing remarks

A Source code

Chapter 1

Introduction

1.1 Problem statement

Congestion control is a general scheme to maximize throughput and
fairness while minimizing delay when sending data over a network. To
achieve this, a congestion control algorithm must find the appropriate rate
at which to send data into the network. To not congest the network with
bursty traffic, traffic may instead be paced to achieve better performance [1].
Pacing involves delaying the transmission of packets to add space between
the packets once they get to the wire.

The Transmission Control Protocol (TCP) provides the logic for congestion
control in the Linux kernel. To facilitate this, Linux TCP possesses
pacing capabilities. This can be generalized to two different approaches:
pacing in the scheduler through a Queuing Disclipline like FQ/Pacing, or
through internal pacing done by the TCP stack. FQ/Pacing has good rate
conformance at the cost of high CPU utilization [2]. Internal pacing gives
congestion control modules a higher degree of control and more precise
RTT estimations, in addition to being the default pacing approach in the
absence of a Queuing Discipline [3].

Both of these approaches are viable, however, they rely on TCP mechan-
isms like ACK-clocking and maintenance of a congestion window, in addi-
tion to being rate-based. This reliance may increase the complexity of Linux
TCP while limiting the capabilities of congestion control modules for fine-
grained control.

1.2 Contributions

In this master thesis we have implemented and evaluated a pluggable
timer-based TCP congestion control module in the Linux kernel. The
implementation featured a novel approach to achieve fine grained per-
packet pacing in both Slow Start and Congestion Avoidance. The event-
driven nature of the implementation allows for fine grained control from

the pluggable congestion control module.

The congestion control logic is devised from the Timer-Based TCP (TBTCP)
research paper, which is unpublished at the time of writing. We have
extracted and modified parts of the logic from this paper, in order to
implement a simplified timer-based congestion control. This simplification
only concerns itself with the Slow Start and Congestion Avoidance phases
of TCP.

1.3 Research questions

In this thesis, we implement and explore the viability of a pluggable timer-
based TCP congestion control module in the Linux kernel.

Replacing established TCP mechanisms

How feasible is it to replace established TCP mechanisms in the Linux
kernel, such as ACK-triggered transmissions and the reliance on a
congestion window? This is a necessity for our implementation, as it
requires us to remove certain standard behaviors of TCP. Can this be done
in a backwards compatible manner, such that other congestion control
modules work as intended?

Pacing with a High-resolution timer

Can Linux TCP congestion control be fully paced in Slow Start and
Congestion Avoidance with the use of a single timer? By fully paced, we
mean per-packet pacing, where each packet transmission is initiated as a
consequence of timer expiration. How does this scale when bandwidth is
high?

Giving control to TCP modules

Is it viable to move congestion control logic from the TCP stack to
pluggable congestion control modules? In Linux TCP, only a subset of
TCP functionality is exposed to congestion control modules through an
APIL How viable is it to extend this API with new functionality, such as
the ability to initiate packet transmissions.

A potential benefit to this is that it may provide developers with more flex-
ibility when developing congestion control modules, such that functional-
ity can be tailored to specific networks and applications.

Delegate recovery handling to TCP

Is it feasible to delegate recovery handling to the underlying TCP stack?
To achieve this, we must notify the congestion control module of TCP state
transitions. When TCP is in recovery, transmissions should not be initiated
from the congestion control module. Additionally, when TCP transitions
from recovery to Congestion Avoidance, the congestion control module
should start at an appropriate sending rate.

Performance

What performance characteristics can be expected from a timer-based
congestion control module? What is the maximum throughput we can
achieve from a solely timer-based congestion control module, considering
it is per-packet paced?

1.4 Organization

The thesis is organized as follows: the first part of chapter 2 gives the reader
relevant background information on congestion control, TCP and pacing.
The second part details how TCP is implemented in Linux. An overview
of this part is vital to understanding the later chapter on implementation.

Chapter 3 specifies the design and core functions of TBTCP. This
specification is what we will base our Linux implementation on. Chapter 4
details the actual implementation of TBTCP in the Linux kernel; both the
code and the challenges we faced in the process.

Chapter 5 evaluates the implementation. Here, we analyze the core
functionality and behavior of the implementation. The thesis is concluded
with Chapter 6, where we summarize our findings and address the research
questions.

1.5 Collaboration

This thesis is a collaborative endeavor by two individuals. As such, the
majority of the work detailed in this thesis is the result of a collaborative
effort. However, the general responsibilities can be divided in the
following manner: Christoffer Bjelke has implemented the logic related
to ACK-handling and post-recovery synchronization. Andreas Limi has
implemented the logic related to packet transmissions and enhancing the
congestion control module API.

Chapter 2

Background

In this chapter, we will give an overview of concepts that the reader should
be aware of to follow along in this thesis. In section 2.1 we will start
by detailing the fundamentals of congestion control and the philosophy
behind it. We then move on to TCP in section 2.2, where we detail the
fundamentals as well as relevant congestion control algorithms. section 2.3
is dedicated to pacing, as it is an essential part of this thesis. Lastly, we
detail the Linux TCP implementation in section 2.4.

2.1 Congestion

The internet has become increasingly diverse since the days of the
ARPANET. As a result, the pursuit of minimizing delay and maximizing
bandwidth utilization is a frequent topic of research and discussion. The
delay is influenced mainly by two factors: distance and queues. The
distance component considers the time it takes for a signal to travel from
the sender to the receiver, taking into account the speed of light and
the specific route the packet follows through the Internet. Even though
communication over the Internet is mainly connection-oriented, it does not
mean that every single packet in a connection traverses the same path.
This is instead decided by packet-switching schemes deployed in nodes
throughout the Internet.

A node can experience congestion when the rate at which packets arrive
exceeds their departure rate. This occurs when the ingress or egress links
of the node are saturated; the term bandwidth denotes how much data
can physically "fit" on a given link per time unit. Instead of discarding
the packets, they may instead be buffered at the node. This helps avoid
loss of data at the cost of increasing delay. Depending on the node’s
buffering capacities, excessive queues may form; this phenomenon is called
bufferbloat [4]. An underlying cause of this is cheap memory in combination
with a priority on avoiding packet loss. This has the potential to increase
round-trip times from the range of milliseconds to seconds. Queues are

difficult to manage, as their existence can only be attributed to increased
delays as seen from the context of the transport layer.

The link on a given path with the lowest bandwidth is commonly called
the bottleneck link. The bandwidth of the bottleneck link describes the
maximum rate at which data can be delivered without increasing delay
times. If we multiply the path delay and the bandwidth, we can calculate
the bandwidth-delay product (BDP) for an arbitrarily complex path. This
denotes the maximum amount of data that can be in flight at any time,
spread across the entirety of the path. From this, we can conclude that
a path can only have maximum utilization if the in-flight data equals the
BDP. However, this does not imply that a sender can transmit BDP amounts
of data in a single burst, as this would cause a queue to form at the
bottleneck link. To remedy this, packets can be paced to distribute traffic
along a path.

Congestion control is a scheme developed to maximize throughput and fair-
ness while minimizing delay. In the Internet it is deployed on the transport
layer, meaning the details of the physical and link layers are abstracted.
Because of this, congestion control algorithms must make assumptions for
sending rate, delays, BDP and bottlenecks based on indicators like the ar-
rival of acknowledgments and losses. Congestion control is essential for
maintaining reliable, fair, and performant communication over networks.

2.2 The Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a communication protocol
deployed in end-hosts to facilitate an in-order, reliable, byte-stream for
communication between applications. It is often paired with the Internet
Protocol (IP) suite, which is often referred to as TCP/IP. This section will
give the reader an introduction to TCDP, starting with an overview based
on RFC 9293! [5]. We will then detail the congestion control aspect of TCP
based on RFC 5681 [6]. Additionally, we will discuss enhancements that
can be implemented to improve the performance of TCP.

2.2.1 Overview

TCP is a transport layer protocol. On a high level, it facilitates communica-
tion between user applications over networks. To enable this, user applic-
ations can communicate with TCP programmatically through an Applica-
tion Programming Interface (API) using sockets. This API consists of ac-
tions an application might need, like sending and receiving data. Through
this abstraction, user applications can be developed independently of the
network infrastructure below them. This concept of layering, where each

I This REC is the base specification of TCP with a focus on the required mechanisms all
TCP implementations should support. It references companion documents for mechanisms
and algorithms outside of this scope.

layer provides a set of services to the layer above it, provides a framework
to build new functionality without the need to be aware of the underlying
implementation.

Below TCP is the Internet Protocol (IP). IP provides an unreliable, best
effort service for routing data through networks. It achieves this through
the use of IP addresses, which is a global addressing system for hosts in
networks. IP is handed data, or segments from TCP, to transfer from a
source to a destination host. IP then encapsulates these segments with its
own headers. An IP header consists of a source and destination IP, along
with other metadata like the transport protocol used, and a checksum to
detect corruption. Through the use of these headers, nodes throughout
the network can route the packet by determining its next hop along the
forwarding path until it reaches the destination host.

As mentioned, the role of TCP is to enable reliable communication between
hosts. TCP achieves this despite the unreliable protocols below it. Below are
some of the strategies TCP employs:

Interface to applications In Linux, applications can interact with TCP
through the use of sockets. Sockets act as an API to the underlying stack
by providing a set of functionality that the application can invoke. Also
called POSIX- or Berkeley-sockets, they originated in 1983 along with
the BSD operating system [7]. They have since become the standard
for implementing application APIs to interact with TCP/IP. A socket
accepts a set of different parameters that specify the protocols to use. To
communicate between different hosts, the domain of AF_INET and a protocol of
0 inform the underlying stack to use IP. Pair this with a type of SOCK_STREAM
and the result is a socket supporting a sequenced, reliable, two-way,
connection-based stream [8]. This equates to a TCP/IP socket on traditional
Linux systems.

Connection oriented TCP is connection-oriented in the sense that a
connection between a client and a server needs to be established before data
can be sent?. A connection can be described as a data structure containing
all state related to the connection. To establish a connection between a client
and a listening server, a three-way handshake is required. The client initiates
this handshake by sending a request to the port that the server is listening
on. This connection is maintained until the data transfer and teardown
process is finished.

Data streaming When an application wants to send data, it writes data to
a TCP socket. The TCP stack will partition this stream of bytes into smaller
segments to be transmitted.

2Throughout this thesis, we will denote the sender of data as the client, while the server
is the receiver. This is the opposite of how traffic conventionally flows in today’s internet.

0123 45678 9%01723 4567890123 45867829201

SOURCE PORT DESTINATION PORT ‘\

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

DATA

OFFSET RESERVED BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS

\ DATA /

Figure 2.1: An illustrated example of a TCP header. The top row of
numbers indicates an index in a bit array, which can be used to determine
the field sizes.

Headers TCP employs headers to transmit metadata about a segment or
the connection itself. Headers are a collection of bits that can be parsed in
a specific manner to identify the individual fields. Among these fields are
source and destination ports, sequence number, the receiver window and
a collection of flags. Flags, or control bits, are individual bits that indicate
the type or purpose of segments. Figure 2.1 provides an overview of what
a TCP header consists of.

Reliable The reliability aspect of TCP guarantees recovery from losses,
corruption, duplication and out-of-order delivery. TCP accomplishes this
by maintaining a sequence number space that maps to every byte sent.
When a server receives data, it sends an acknowledgment back to the client.
In the basic sense, an acknowledgment contains the highest cumulative
sequence number the server has successfully received in order up to that
moment in time. The client can use this information to determine which
packets need to be retransmitted.

In-order delivery Although packets may not arrive at the server in-order,
data is still guaranteed to be pushed in-order to applications. This is
essential, as applications may rely on this guarantee.

Flow control TCP prevents congestion at the server by implementing a
receive window. This represents the sequence numbers that the receiver
is willing to accept. The server advertises this to the client in the initial
handshake and throughout the transmission lifetime. The receive window
ensures that the client does not overrun the server with data.

Segmentation

Segmentation refers to the process of dividing a stream of data from the
application to TCP segments. As indicated in the overview, the data written
from the application may not equate to the amount of TCP segments
transferred. TCP may even delay sending to combine data from multiple
sEND calls from the application. On the receiver side, segments can be
buffered to batch writes to the application. To prevent this, the sending
host can set the pus flag in its SEND calls to instruct the receiver to push data
to the application promptly.

There are several factors to consider when determining the sizing of
segments. Sending larger segments limits the number of segments in-flight,
effectively limiting the amount of TCP headers needed which results in
less processing needed at the hosts. Sending smaller segments results in
limiting delayed transmissions and avoiding fragmentation. To determine
the size of segments, TCP uses a negotiated MSS and Path MTU Discovery
(PMTUD). To prevent sending smaller segments than the determined MSS,
TCP may buffer data until a full MSS-sized segment can be sent. This is
determined by the Nagle Algorithm [9].

Maximum Segment Size The Maximum Segment Size (MSS), is the
upper bound of the size of a TCP segment that the client is allowed to send
[10]. It is negotiated during the handshake, where the server suggests a
value.

Maximum Transmission Unit Unlike the MSS, which determines what
the server can receive, the Maximum Transmission Unit (MTU) denotes
the largest segment size that can be transferred across the network path
while avoiding fragmentation [11]. The MTU is found by a process called
Path MTU Discovery (PMTUD), which involves probing the network with
gradually smaller segments until fragmentation does not take place. This
algorithm relies on routers returning an ICMP message if a segment is too
large to forward without fragmentation occurring [11]. An Internet Control
Message Protocol (ICMP) message is a way for communicating hosts to
provide feedback when problems arise [12]. An extension of PMTUD that
does not rely on ICMP messages is the Packetization Layer Path MTU
(PLPMTUD). PLPMTUD does this by injecting gradually larger packets
into the network and increases the MTU if the packets are successfully
delivered [13]. This removes the reliance on ICMP messages, as PLPMTUD
reacts to the loss itself, rather than ICMP messages.

Nagle Algorithm The Nagle algorithm is an optional mechanism for
delaying transmission at the client. When in use, TCP will delay sending
data until either all unacknowledged data has been acknowledged, or there
is enough data buffered to send a full-sized TCP segment [14].

Retransmission Timeout

A Retransmission Timeout (RTO) is a required mechanism that retransmits
lost data when the server fails to respond with an acknowledgment. It is
implemented by queuing a timer and retransmitting data when the timer
expires. How long to enqueue the timer is based on the smoothed round-trip
time (SRTT) and the round-trip time variation (RTTVAR). In essence, the SRTT
is a Weighted Moving Average, where recent RTT measurements are given
more weight than previous ones. The RTTVAR is a weighted average of the
difference between the SRTT and the actual RTT. Initially, the RTO timer is
enqueued for 1 second. When RTT measurements are being registered, the
time to enqueue the timer is found by the following formula [15]:

RTO = SRTT 4 max(G, K x RTTVAR) (2.1)

Where G is the clock granularity and K is equal to a constant value of 4.

2.2.2 Congestion Control

In this section, we will discuss TCP congestion control in detail. We will
start by defining the necessary concepts and mechanisms for implement-
ing congestion control, and then proceed on to describe the required al-
gorithms.

Receiver window The receiver window (rwnd) is a server-side variable
that denotes how much data the server is willing to receive. This can be
assumed to be related to the available buffer space at the server and is
advertised on every acknowledgment.

Congestion window The congestion window (cwnd) is a mechanism that
limits how much data the client can send to prevent network congestion.
As acknowledgments are being received, the congestion window expands,
allowing the client to send more data. It is further limited by an upper
bound of the rwnd, effectively limiting the amount of inflight data by the
formula:

quota = min(rwnd, cwnd) (2.2)

Upon loss events, the congestion window is usually reduced to not induce
further congestion. In RFC 5681 [6] the initial value of this variable was
required to be between 2 and 4 segments, based on the MSS. However,
modern implementations (including Linux [16]) often increase the upper
bound to 10, as proposed in RFC 6928 [17].

Acknowledgment clocking TCP relies on the arrival of incoming ac-
knowledgments. This enables both expanding the cwnd and the progres-
sion of the state machine. When an acknowledgment arrives, TCP will run
it through various validation processes in addition to checking if data can
be transmitted. This process is essential to maintain the so-called "ACK
clock".

To facilitate this, the server should respond with acknowledgments
containing the highest cumulative sequence number it has received in
response to out-of-order packets. When multiple acknowledgments of
the same sequence number are sent, they are referred to as Duplicate
Acknowledgements (DupACKs).

In-flight data A client-side variable, FlightSize, is introduced to denote the
amount of unacknowledged data in the network. Conceptually, this can be
thought of as the actual data in flight. However, it is unrealistic to estimate
this accurately in actual implementations.

Algorithms

The congestion control aspect of TCP can be condensed into four al-
gorithms; Slow Start, Congestion Avoidance, Fast Retransmit and Fast Re-
covery. RFC 5681 [6] currently specifies the standard of these algorithms.

Slow Start When a connection is initiated or suffers from heavy losses,
the client must probe the network for available bandwidth. To achieve this,
the Slow Start algorithm is used. A new variable, ssthresh is introduced,
which determines when to use this algorithm by the formula cwnd <
ssthresh. It is initiated to an arbitrarily high value when a connection is
initialized and is reduced when congestion is experienced.

The client will initiate the Slow Start phase by sending as many segments
as the cwnd allows. Upon the arrival of acknowledgments, the cwnd is
increased by 1*MSS. Contrary to its name, this is effectively an exponential
increase of cwnd which facilitates a rapid increase of the sending rate
to one that exceeds the bottleneck rate. When congestion is ultimately
experienced, the sstresh and cwnd variables are reduced to progress TCP
into Congestion Avoidance.

Congestion Avoidance Congestion Avoidance is the commencing phase
after Slow Start, with a more conservative increase of cwnd. The congestion
window can be increased by at most one MSS per RTT, or expressed as
the result of MSS x MSS/cwnd for every received acknowledgment of new
data (which equates to roughly one MSS per RTT?).

3This is dependant upon the acknowledgment rate of the receiver. We assume delayed
ACKs are disabled in this case.

10

Losses Earlier, we described RTO timeouts in section 2.2.1. Timeouts play
a vital role in congestion control in terms of adjusting ssthresh and cwnd.
Upon a timeout, ssthresh must be set according to the following rules:

1. If the lost segment has not yet been retransmitted:

ssthresh = max(FlightSize/2,2 x MSS) (2.3)

2. If the lost segment has been retransmitted in the past, ssthresh is held
constant.

The cwnd on the other hand, should be set to 1*MSS, to induce a Slow Start
phase until it reaches the adjusted ssthresh.

Fast Retransmit Instead of waiting for an RTO timeout (which equates
to at least an RTT), TCP can transition to a recovery phase on the arrival
of DupACKSs. DupACKs indicate that the server receives packets out-of-
order, which in turn indicates either loss or reordering. After receiving
three DupACKSs, TCP retransmits the segment that is determined lost.

Fast Recovery After performing a Fast Retransmit, it is desirable to
continue injecting new data into the network. This is under the assumption
that packets continue leaving the network based on observed DupACKs.

The Fast Retransmit and Fast Recovery algorithms are coupled together
and must be implemented according to the following rules:

1. Upon receiving the first two DupACKs, TCP should transmit a
segment of new data for each DupACK, without expanding cwnd and
FlightSize.

2. Upon receiving the third DupACK, ssthresh must be adjusted with an
upper bound given by Equation 2.3. The segment which contains the
lowest unacknowledged sequence number should be retransmitted.
Lastly, the cwnd must be adjusted to sstresh + 3 x MSS. This is done
to reflect the three DupACKs that have left the network.

3. On subsequent DupACKs received, the cwnd must be increased by
1*MSS. New data should be sent if Equation 2.2 allows.

4. Recovery should terminate upon receiving an acknowledgment that
acknowledges the lost segment, in addition to segments sent in the
interval between the initial transmission of the lost segment and the
arrival of the third DupACK. Additionally, cwnd must be set to sstresh.
This is done to revert the aggressive expansion of cwnd that was done
in steps 2 and 3.

11

2.2.3 Enhancements
Selective acknowledgements

The following contents are based on RFC 2018 [18] (TCP Selective
Acknowledgement Options) and RFC 6675 [19] for how to integrate
selective ACKs in fast retransmit/recovery.

TCP may perform poorly when multiple segments from the same window
are lost. In the scenario where multiple segments are lost, the sender is only
capable of detecting the loss of a single segment per RTT. There is simply
no information in the acknowledgments that tells the sender which or how
many segments are lost.

Selective Acknowledgements (SACKSs) can solve this problem by telling
the sender which segments have been lost so that only those segments
need to be retransmitted. A SACK consists of blocks that describe bounds
of data that have been received; data outside these bounds are to be
considered lost. Whether or not the receiver is permitted (and the sender
is able) to send SACKs is denoted by the SACK-permitted option from the
handshake.

Improvements to Fast Retransmit and Fast Recovery

To improve upon the Fast retransmit and Fast Recovery algorithms, one
can implement the use of SACKs to determine how many bytes are in
flight by maintaining a pipe variable. The pipe variable holds an estimate
of the number of segments that have not been SACKed nor considered
lost in the interval from the highest acknowledged sequence number to
the highest sequence number that has been transmitted. This estimation
uses heuristics to determine if a packet should be considered lost. This is
detailed in RFC 6675 [19].

The downside to this method is that it tends to send large bursts of data
when experiencing heavy losses. The reason for this is that the pipe estimate
can become inaccurate [20]. When the algorithm enters recovery mode,
it will first adjust cwnd and ssthresh to half of the FlightSize. It will then
retransmit the lost segment and more if cwnd allows it. For each received
ACK, (cwnd - pipe) amount of data will be sent out.

Another potential weakness is the delay between retransmitting the first
lost segment and subsequent segments. As cwnd and ssthresh are set to
FlightSize / 2 (while we assume the value of pipe is close to FlightSize),
subsequent data will not be sent out until half of the outstanding
acknowledgments have been received. This issue is only prevalent when
losing at least (cwnd /2) amount of data [20].

12

Decreasing DupACK threshold

A weakness of standard Fast Retransmit is potentially poor loss detection
at the end of a flow. If a loss occurs near the end of a transmission, there
might not be enough outstanding segments to generate the three DupACKs
required to trigger recovery. The Early Retransmit algorithm proposes
to fix this by lowering the DupACK threshold in certain situations. The
following conditions must hold to use Early Retransmit:

¢ The number of outstanding unacknowledged segments must be less
than 4.

¢ The client has no new data to transmit or the rwnd forbids sending
new data.

If the following conditions hold, the client can set the DupACK threshold
to outstanding_segments — 1 where outstanding_segments are segments sent,
but not yet acknowledged.

Adjusting the Slow Start threshold

There are various approaches for how to adjust ssthresh during recovery.
In Equation 2.3 it is denoted that ssthresh should be adjusted to FlightSize
/2. The following statements are based on the discussion in [21].

CUBIC is a congestion control algorithm that utilizes a cubic congestion
window increase function [22], rather than a linear increase function (this
is detailed in section 2.2.4). In CUBIC, which is the default in many
Linux distributions today, ssthresh is to be set to cwnd x beta_cubic where
beta_cubic is usually set to 0.7 [22].

Adjusting by cwnd in this manner can be suboptimal when the sending
rate is application-limited. If the sending rate is application-limited, it
means that TCP is not able to utilize the available cwnd capacity due
to the application not writing sufficient amounts of data to the socket.
Additionally, TCP may increase the cwnd when ACKSs arrive on time. As a
result of these two factors, cwnd may be arbitrarily high. Upon a congestion
event, the adjusted cwnd value may be higher than FlightSize, effectively
not reacting to the congestion at all.

On the other hand, FlightSize can be inaccurate when packets are
dropped at the end of a burst in application-limited transmissions. If the
client sends data in a burst, the FlightSize will initially increase, before
converging to a significantly lower value once acknowledgments for those
packets are received. If a congestion event occurs at the end of such a
burst, the cwnd will be adjusted to a lower value. This value may be
disproportionately low as FlightSize in this case is not representative of
the link capacity, but rather limited by the application.

13

Window Scaling

As networks evolve, the capabilities of TCP must follow. As illustrated
in Figure 2.1, the window field, which informs the client about the rwnd is
only 16 bits long. This allows for a window size with an upper bound of 26
bits, or 64 KiB. Initially, this was sufficient, however, the increased available
bandwidth in networks has prompted a need for larger rwnd sizes.

To solve this issue, the TCP option Window Scale was implemented. This
option is communicated in the handshake process and requires both the
client and server to set scaling options in the exchanged SYN segments.
This option includes a shift count that describes how many times to shift
the advertised rwnd to derive the scaled window size. The shift count
can be set to a maximum of 14, resulting in window sizes of up to
(216 — 1)*bits » 2'4pits = 230 — 1bits ~ 1GiB [23]. The reason for this
limitation is related to the way TCP validates sequence numbers °.

Proportional rate reduction

Proportional Rate Reduction is an alternative to Fast Recovery to adjust
the cwnd to a more conservative value during recovery, resulting in a cwnd
size close to ssthresh after recovery. It achieves this by adjusting the
cwnd proportionally based on network conditions. The following rules are
implemented upon entering recovery [24]:

1. If FlightSize > sstresh, cund reductions are spread out across an RTT.

2. Else, reduce cwnd based on the following conditions:

e If losses keep occurring, follow the principle of packet conserva-
tion [25] to send as much as delivered.

¢ Else, increase cwnd by how much data was delivered to quickly
reach sstresh, much like in regular Slow Start.

PRR is widely deployed as the standard in Linux today [24].

Preventing timeouts

Recent Acknowledgement Tail Loss Probe (RACK-TLP) is a mechanism
that attempts to more often induce Fast Recovery [26], instead of waiting
for an RTO to occur. This can speed up the time spent in recovery, as losses

4The advertised window value must be subtracted by one to prevent wraparound, as it
is treated as an unsigned number.

5To not discard data as old, TCP must ensure that the client window differs no more
than 23! bytes away from the right edge of the server-side window. Since either side of the
server and client windows can differ by the window size, it implies that the scaled window
must be less than 239bits.[23]

14

are repaired quicker, while cwnd reductions are minimized. RTOs may be
triggered by the following scenarios:

1. Packet drops for short flows or at the end of an application data flight.
2. Lost retransmissions.

3. Packet reordering.

To improve upon loss detection, RACK utilizes time, rather than counting
DupACKSs, to trigger Fast Recovery. It does this by keeping timestamps
for each segment sent. Additionally, each segment is given an expiration
time based on RTT measurements and a reordering window, which is an
additional delay to account for segment re-ordering [26]. Upon receiving
an acknowledgment, RACK will adjust all recorded timestamps based
on the measured RTT. If a timestamp expires, the associated segment is
marked as lost. It is worth noting that, even though RACK does not rely
on DupACKs to arrive, it is still dependent on acknowledgments arriving.
Intuitively, this could prove problematic in flows with tail losses.

Tail Loss Probe (TLP) is a mechanism that can be implemented to improve
upon RACK, hence the name RACK-TLP. At the end of a flow, TLP will
either send a new segment or retransmit the outstanding segment with
the highest sequence number, in an attempt to provoke the receipt of
an acknowledgment. This lets RACK continue checking for the expired
segment to trigger Fast Recovery, rather than waiting for an RTO.

This approach may contribute to quicker recovery phases and less cwnd
reductions during heavy losses when the client is application-limited or
when there is limited in-flight data [26]. The main drawback of RACK-
TLP is associated with the requirement of additional state management
compared to DupACK counting. Essentially, a RACK implementation
requires the sender to keep track of per-packet transmission timestamps
[26].

2.24 Congestion Control Algorithms

There are several congestion control algorithms in use today, each with its
approach to managing network traffic. In this section, we will provide an
overview of some of the most widely used congestion control algorithms
implemented on top of TCP.

Reno

Reno is the default fallback congestion control algorithm used in Linux
today and it is based on Van Jacobson’s Slow Start and Congestion
Avoidance algorithms [25]. Reno is a loss-based congestion control
algorithm, meaning it relies on packet loss to detect congestion in the

15

network. It employs an exponential increase in Slow Start where two
packets are transmitted for each arriving ACK. The Congestion Avoidance
phase features an additive increase, where the cwnd is expanded by
(1/cwnd) per arriving ACK.

BBR

Bottleneck Bandwidth and Round-trip propagation time (BBR) is a con-
gestion control algorithm that reacts to actual link congestion rather than
packet loss. The idea of BBR is to have the sending rate converge to an
optimal value (the Kleinrock point), which is the intersection between min-
imal congestion and the highest bandwidth utilization [27].

Gauging bottleneck bandwidth To reach this optimal sending rate, BBR
continually probes the network for more bandwidth. Two key metrics need
to be continually re-measured to achieve this; the RTT and the bottleneck
bandwidth. However, only one of these metrics can be measured at
any given time. This is because the RTT cannot be re-measured without
lowering the sending rate below the estimated BDP, while the bottleneck
bandwidth needs to be measured with a sending rate above the estimated
BDP. These two metrics must be continually probed and measured as a
transport path can be subject to change (physical path, link capacity, traffic,
etc.).

BBR uses these measurements to estimate both the volume and rate at
which to send data. Ideally, data should be sent at the rate at which packets
leave the network (the rate of the bottleneck link), while the volume of in-
flight data should match the BDP [28]. A mismatch between the rate and
the volume can cause an increase in delay and losses. If the rate equals the
bottleneck rate, but the in-flight data exceeds the BDP, queues will form.
Also, if the client sends a BDP worth of packets in a burst, the packets will
either be buffered or dropped at the bottleneck.

CUBIC

CUBIC is another congestion control algorithm that modifies the standard
linear window growth. The CUBIC increase function is instead cubic,
hence the name. It is suitable for networks where the BDP is large,
as the increase function allows for a more aggressive increase when the
congestion window is far from saturated, while gradually slowing down
as it reaches saturation [29]. This should result in a stable and scalable
algorithm, and it is the default congestion control algorithm in Linux today.

Increase function The stability of the CUBIC algorithm is achieved by the
use of a binary search function to determine how fast the window should
grow. The trick is to find the mid-point between the window size at the

16

400

— cwnd 250 —— cwnd
--- ssthresh

o
£ 350 --- ssthresh
s

2
© 300
<

1448 bytes

<
'; 250

-
I
=)

4200

Units of MSS, MSS

0.00 025 050 0.75 1.00 125 150 175 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Time (seconds) Time (seconds)

(a) CUBIC without Hystart. (b) CUBIC with Hystart.

Figure 2.2: CUBIC with and without Hystart

last loss event and the maximum window size where no loss occurred
throughout an RTT [29]. If these two points are far apart, eg. the current
window size is significantly smaller than the window size at the last loss
event, the window will aggressively increase to the mid-point. The new
range is then set to the mid-point and the maximum window size, making
the next window increase smaller. When the previous saturation point is
exceeded, the window will continue to increase gradually to probe for more
bandwidth.

Hystart To mitigate an overshoot during Slow Start, Linux CUBIC
employs a mechanism called Hystart. This algorithm is active after a certain
window threshold during Slow Start, which attempts to detect congestion
before a loss occurs. Hystart monitors the frequency of arriving ACKs,
and increases in RTT, to determine if congestion occurs in the network
[30]. When congestion is detected, Hystart transitions TCP to Congestion
Avoidance, effectively ending Slow Start earlier than traditional TCP.

2.3 Pacing

When sending data over a network, both the volume and sending rate can
influence congestion. In TCP, the volume of in-flight data is governed by
the cwnd. However, this window does not control the rate at which data
is sent, potentially allowing for burst traffic. This section aims to explore
scenarios where TCP can exhibit bursty behavior and why this can lead
to a detriment in performance. To explore whether or not pacing is worth
pursuing, we will feature two papers on the topic of pacing performance.

Motivation

Bursty behavior in TCP could occur in the following scenarios:

* Regular Slow Start is bursty by nature, as it sends two new packets
for each arriving acknowledgment received. If acknowledgments are
generated at the bottleneck rate, TCP is effectively sending data at a

17

rate double what the bottleneck can handle. This leads to a queue
forming at the bottleneck [31], and inevitably packet drops.

e If a lost packet is retransmitted successfully, the client may free up
the cwnd, allowing a burst of traffic [31]. As acknowledgments
are cumulative, the arriving acknowledgment may contain sequence
numbers past the packet that was lost, resulting in an expanded cwnd.

* Ack Compression is a phenomenon where acknowledgments are
queued behind data segments on the reverse path [31]. This could
eliminate the spacing between acknowledgments that initially left
the receiver at the bottleneck rate, thereby resulting in a burst of
acknowledgments at the client, freeing up the cwnd.

* When a bottleneck link is shared by multiple bursty flows, there is a
potential for generating a larger burst than each of the flows would do
individually. If the bursty traffic of two flows arrives simultaneously
at the bottleneck, the result is an even bigger burst. This will either be
absorbed by the bottleneck buffer causing queue buildup, or packet
drops.

Intuitively, these issues could be mitigated by pacing packets, rather than
transmitting them in a burst. Pacing involves distributing packets across
a designated time unit, such as a window’s worth of packets spread
across an RTT. This gradual distribution of packets facilitates a smoother
increase toward bottleneck capacity. In other words, the cwnd determines
the volume of data, and pacing determines the sending rate. From the
perspective of queuing theory, burst traffic can in the worst case increase
delay linearly with network load. Pacing, on the other hand, can achieve a
constant delay until the bottleneck is fully subscribed [31].

Research

The research on whether or not pacing is beneficial has been mixed. The
simulation study on pacing in [31] from 2002 showed that pacing traffic
results in higher latencies and lower throughput in many situations. This
paper simulated paced and non-paced flows in several different scenarios®.
They used TCP Reno as the non-paced version and a paced modification
of Reno, Paced Reno, that distributed a window of transmissions across an

RTT. They concluded with the following key findings:

* For a single flow, Paced Reno performed better than Non-paced on a
bottleneck with buffer capacity equal to 1/4 of the BDP. This can be
attributed to the paced flow being able to Slow Start for longer, as the

6The setup consisted of a set of clients and servers, connected via a bottleneck router
using a FIFO queue. The links from the end hosts to the bottleneck were configured at
four times the bandwidth of the bottleneck at a delay of 5ms. The bottleneck link itself was
configured with a 40ms delay.

18

non-paced flow quickly saturates the bottleneck causing congestion.
As buffer capacities increase, the non-paced flow performs better as
the bursts can be buffered.

* When multiple paced flows compete, there is a possibility for
synchronized drops. As paced traffic is distributed across time, packets
from multiple flows become mixed. As a consequence of this,
multiple flows experience congestion when the bottleneck is finally
oversubscribed, thereby causing underutilizing of the link, as the
flows collectively decrease their sending rate. This results in poor
throughput compared to non-paced flows, where some of the flows
experience congestion before the bottleneck is fully utilized.

¢ Pacing can achieve improved normalized fairness due to synchroniz-
ation. The synchronization of flows results in simultaneous back-offs,
which effectively prevents any one flow from using an unproportion-
ate amount of the bandwidth.

* When paced and non-paced flows compete, paced flows are more
likely to experience congestion. This could be attributed to the
interleaving of paced traffic with bursty traffic.

A later paper from 2006 [1] revisits the performance of pacing and re-
evaluates the results in [31]. While this paper made similar observations
when conducting the same tests, it offers a more nuanced and updated
assessment of the performance of pacing. Contrary to [31], this paper
concluded that flow performance is better when all flows are paced,
compared to when no flows are paced [1]. It also found that the
performance of all flows can increase in networks shared between non-
paced and paced flows when the amount of paced flows exceeds a certain
threshold.

This paper introduced a new performance metric, worst-flow latency, which
denotes the latency of the slowest flow to finish a transfer within a set of
flows with equal RTTs that are initiated simultaneously to transmit an equal
amount of bytes [1]. This metric is especially important to applications that
depend on the completion of multiple concurrent flows. Paced flows were
shown to outperform non-paced flows in many situations when comparing
this metric. Through a series of experiments involving a homogeneous
set of flows tested over local area networks (LANs), high-speed TCP
variants in wide area networks (WANSs), and varying buffer sizes, it was
demonstrated that in many scenarios, the pacing of flows resulted in better
performance compared to non-paced flows when evaluated against this
metric.

When evaluating aggregate throughput in an isolated environment, paced
flows generally perform better. These experiments were done with TCP
Reno and high-speed TCP variants like BIC-TCP and FAST over networks
with varying buffer sizes. Experiments conducted with Reno show that
the non-paced flows slightly outperform the paced flows (with buffer sizes

19

exceeding 1/10 BDP packets) within an upper bound of 25%. For the high-
speed variants, paced flows perform better across buffer sizes.

To improve the performance of paced flows when competing with non-
paced flows, they introduced a more aggressive pacing scheme. Rather
than pacing the current window across an RTT (RTT/cwnd), the rate
was instead adjusted to correspond to the window for the next RTT. This
effectively made the window of paced flows grow at the same rate as that
of the non-paced flows. This achieved similar aggregate throughput for the
paced and non-paced Reno flows when an equal amount of paced and non-
paced flows share a network. However, non-paced flows still outperform
paced flows when introducing the use of SACKSs. This could be attributed
to the more efficient detection of burst losses enabled by SACKs. When
BIC-TCP flows competed, the non-paced flows were shown to have slightly
higher aggregate throughput, while pacing performed better in terms of the
worst-flow throughput.

Conclusion

The findings in [1] concluded by encouraging the use of pacing. Paced
flows performed well in networks with small buffers, particularly in terms
of the worst-performing flow. High-speed TCP variants were also shown
to perform better when paced. Additionally, paced flows could improve
the performance of non-paced flows in a mixed environment.

On the other hand, paced flows achieve lower aggregate throughput
when competing with non-paced Reno/BIC-TCP flows. The implications
of synchronization in paced flows, highlighted in [31], should also be
considered. The emergence of new TCP variants could also affect the
performance of pacing, as we have seen with high-speed variants like
BIC-TCP. Ultimately, the decision on whether or not to pace should be
made based on the specific requirements of the application and network
in question.

24 TCP in the Linux kernel

The TCP stack in the Linux kernel is a sophisticated state machine that
handles data transmissions across data centers worldwide. Comprehensive
knowledge of the existing implementation is necessary when we are to
implement a re-designed timer-based TCP in the kernel. In this section, we
will give an introduction to how TCP is implemented in the Linux kernel.
We will take a look at key features and mechanisms that are relevant to our
implementation.

20

State machine

TCP transitions through a set of states through the lifetime of a flow. State
transitions occur based on different events and conditions. We will now
detail the relevant state machines below.

Connection state

The connection state machine tracks the lifecycle of a flow, from the
handshake to the teardown process’. The relevant states are highlighted
below:

SYN_SENT The SYN_SENT state is entered when the client initiates an
outgoing connection.

ESTABLISHED The client enters the ESTABLISHED state when receiving an
ACK in response to a SYN. The client can now initiate the transmission of
data.

Congestion control state

The congestion control state machine tracks the state related to congestion
control for an established TCP connection. The different states are as
follows®:

OPEN The OPEN state denotes the normal, business-as-usual state, meaning
no congestion events have occurred. It also allows fast forwarding of the
processing of incoming packets.

DISORDER The DISORDER state is entered when SACKSs or DupACKs arrive
which may signify congestion. It is similar to OPEN but enforces more
thorough processing of incoming packets.

CWR This state is entered due to a Congestion Notification event, such as
Explicit Congestion Notifications (ECNs) [34] or congestion on the local
device. Device congestion may be detected by TCP based on the response
from the function call to transmit packets [35].

7linux-kernel-5.19 | tcp_states.h[32].
8linux-kernel-5.19 | CA states [33].

21

O I O\ Ul = W IN -

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

RECOVERY This state is entered when the client enters recovery, mainly due
to DupACKs. In this state, the cwnd is reduced and ssthresh is adjusted,
and packets may be retransmitted. The state is transitioned back to OPEN
upon receiving a full ACK.

LOSS TCP enters LOSS due to RTO timeouts or an incoming SACK which
indicates that the server retracts previously acknowledged data.

TCP modules

TCP modules are the desired way to implement new TCP variations in the
kernel. TCP modules are plug-and-play implementations that consist of a
single C file along with its header files. They reside in net/ipv4/tcp_*.c
and can either be compiled as kernel modules or as part of the kernel.

A TCP module can be thought of as a layer on top of the existing TCP
stack in Linux. The Linux TCP stack handles most aspects of TCP like
transmits, retransmits, receiving packets, MTU-probing, etc. To allow
for the creation of modules, the TCP stack exposes an API that allows
for fine-grained control of TCP parameters through a set of predefined
callbacks. A module is required to implement a subset of these callbacks.
An example of a TCP module in its most basic form is the Reno TCP module
in net/ipv4/tcp_cong.c, displayed in Listing 2.1.

/*

* TCP Reno congestion control

* This is special case used for fallback as well.

*/

/* This is Jacobson’s slow start and congestion avoidance.
* SIGCOMM °88, p. 328.

* /
void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32
acked)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!'tcp_is_cwnd_limited(sk))
return;
/* In "safe" area, increase. */
if (tcp_in_slow_start (tp)) {
acked = tcp_slow_start(tp, acked);
if (lacked)
return;
}
/* In dangerous area, increase slowly. x*/
tcp_cong_avoid_ai(tp, tp->snd_cwnd, acked);
}

EXPORT_SYMBOL_GPL(tcp_reno_cong_avoid);

22

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

/* Slow start threshold is half the congestion window (min
2) x/
u32 tcp_reno_ssthresh(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
return max (tp->snd_cwnd >> 1U, 2U);
}
EXPORT_SYMBOL_GPL(tcp_reno_ssthresh);
u32 tcp_reno_undo_cwnd(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
return max (tp->snd_cwnd, tp->prior_cwnd);
}
EXPORT_SYMBOL_GPL(tcp_reno_undo_cwnd) ;
struct tcp_congestion_ops tcp_reno = {
.flags = TCP_CONG_NON_RESTRICTED,
.name = "reno",
.owner = THIS_MODULE,
.ssthresh = tcp_reno_ssthresh,
.cong_avoid = tcp_reno_cong_avoid,
.undo_cwnd = tcp_reno_undo_cwnd,
};
Listing 2.1: TCP Reno module from net/ipv4/tcp_cong.c
Callbacks

TCP modules can access the Linux TCP stack through a set of callbacks’.
These callbacks fire at different stages during the TCP state handling.
Essentially, these callbacks allow TCP modules to control mechanisms like
the congestion window, slow-start threshold, segment offloading sizes and
pacing rate. The subsequent paragraphs will feature the most relevant

callbacks.

init / release are both required callbacks that fire upon entering the
initialization and clean-up phases respectively. The TCP module has a
dedicated memory area of 104 bytes'? within the socket that can be utilized
freely. These functions are used to populate and clean up this area in most

TCP implementations.

91inux-kernel-5.19 | tcp.h:struct tcp_congestion_ops [36].
107 inux-kernel-5.19 | inet_connection_sock [37].

23

ssthresh is a required callback and should return the slow-start
threshold to be used. It fires upon entering the LOSS!! and CWR!? states.
Standard TCP returns half the congestion window.

set_state is an optional callback which fires upon a state transition!3.

The new state is provided as an argument.

cong_avoid isarequired callback that fires towards the end of processing
an incoming ACK!. It is replaced by the optional callback cong_control
which is an attempt to combine multiple callbacks into one. The
responsibility of these functions is to update cwnd and pacing rate.
cong_control also receives a rate sample that contains delivery rates, losses
and round-trip times over an interval of time.

undo_cwnd is also a required callback that should return the new value of
cwnd upon transitioning from LOSS'® or RECOVERY'®. Standard TCP sets this
to the value of cwnd from before the congestion event occurred”.

pkts_acked is an optional callback that fires when ACKSs are received.
It is passed an ack_sample as an argument which contains the amount of
packets acknowledged, RTT sampled from the ACK and the number of in-
flight packets.

In addition to controlling the TCP stack, most TCP modules also maintain
their own state machine through these callbacks. The state is saved in the
mentioned dedicated memory area stored in the socket. An example of this
is BBR (tcp_bbr.c), which maintains state, measurements and bandwidth
estimates in its socket.

Pacing

The Linux kernel supports TCP pacing internally or through a scheduler.
In both cases, the rate of pacing is controlled through a pacing rate stored
in the socket associated with a flow. This rate is either updated by the TCP
stack or at will by TCP modules. If the pacing rate is controlled by the
former, it will by default call tcp_update_pacing_rate upon receipt of an
ACK, which scales the pacing rate by a factor of 2 or 1.2 in Slow Start and
Congestion Avoidance respectively!®.

17 3inux-kernel-5.19
127 inux-kernel-5.19
131 inux-kernel-5.19
141 inux-kernel-5.19
151 inux-kernel-5.19
1613 nux-kernel-5.19
171 inux-kernel-5.19
187 inux-kernel-5.19

| tcp_enter_loss [38].

| tcp_cwnd_reduction [24].

| tcp_set_ca_state [39].

| tcp_cong_control [40].

| tcp_try_undo_loss [41].

| tcp_try_undo_recovery [42].

| tcp_reno_undo_cwnd [43].

| tcp_input.c:update_pacing_rate [44].

24

600 -
e cubic ¢

cubic fg f
500 - f

400 - fi

300 A /i

200 - /
100 /

L

T T T T
0.00 0.05 0.10 0.15 0.20
Normalized Timestamp

Mormalized Packet Number

Figure 2.3: A time sequence plot showcasing the difference in slow-start
between a non-paced and paced CUBIC flow using standard FQ in Linux.
50Mbit bandwidth and 30 ms RTT.

Pacing in the scheduler One way the kernel enables pacing is through
the sch_fq (fq/pacing) packet scheduler. sch_£q' is a Fair Queue packet
scheduler with optional pacing capabilities that can be deployed on the
egress path of a client. It stores TCP flows in Red-Black trees and serves
them in a Round Robin fashion. When serving a flow, the scheduler adds
a delay between packets to conform to the rate (sk_pacing_rate) set in the
socket belonging to the flow. The sk_pacing_rate in the socket denotes
the maximum amount of bytes that can be transmitted every second®.
Figure 2.3 compares a non-paced and paced cubic using the standard FQ
pacing in Linux.

Internal pacing The alternative to pacing in the scheduler was intro-
duced to accommodate the BBR implementation in Linux. The network
stack can now opt-in to use internal pacing. More specifically, pacing can
be done from within the TCP stack rather than in the scheduler. The ar-
gument and commit for this feature were made by Eric Dumazet [3]. He
argued that Linux hosts handling a minor amount of flows did not require
the high performance that the scheduler can provide. Additionally, moving
pacing mechanisms to the TCP layer eliminates the reliance on a specific
scheduler to be deployed on the system.

Internal pacing can be activated by changing a flag (sk_pacing_status)
in the socket to SK_PACING_NEEDED. This tells the network stack to pace

191inux-kernel-5.19 | sch_£fq.c [45].
201 inux-kernel-5.19 | sk_pacing_rate [46].

25

R IO\ Ol WIN -

1.0 } — BBRinternal pacing
—— BBRfg

208
E
=
[}
Iv]
o6}
-
o
[
N
G
= 0.4r
o
[}
N
©
E
S 0.2
2

0.0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Time (seconds)

Figure 2.4: Comparison of BBR internal pacing and FQ/pacing.

packets internally. In the Linux BBR implementation, internal pacing and
pacing via the scheduler are mutually exclusive. BBR will either rely on
the scheduler for pacing if it is deployed, and if not, BBR will fall back to
pacing internally?!. The function responsible for handling internal pacing
is tcp_pacing_check displayed in Listing 2.2.

static bool tcp_pacing_check(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);

/* check SK_PACING_NEEDED flag x/
if (!tcp_needs_internal_pacing(sk))
return false;

/* check if next packet should be sent immediately */
if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
return false;

/* queue a timer to defer packets */
if ('hrtimer_is_queued (&tp->pacing_timer)) {
hrtimer_start (&tp->pacing_timer,
ns_to_ktime (tp->tcp_wstamp_ns),
HRTIMER_MODE_ABS_PINNED_SOFT) ;
sock_hold (sk);
}

return true;

Listing 2.2: tcp_pacing_check from tcp_output. c [48]

When TCP handles data chunks, it does this in the form of an abstraction
called SKBs. An SKB (sk_buff) is a data structure representing a network

211 inux-kernel-5.19 | bbr_init [47].

26

packet to be sent. It contains metadata for the packet in addition to pointers
to the packet data itself. What this provides is a unified interface for a data
packet that can be passed throughout the network stack.

tcp_pacing_check runs whenever the TCP stack attempts to transmit data.
The tcp_wstamp_ns is a timestamp calculated based on the pacing rate and
size of the SKB?2. If this timestamp is in the past, the packet should be sent
immediately and does not need to be paced. However, if the timestamp
is in the future, the transmission is deferred by queuing a high-resolution
timer (hrtimer), referred to in the code as pacing_timer. The intention

here is to defer the transmission until the rate quota is sufficient to transmit
the SKB.

When the queued pacing_timer fires, it triggers a callback function named
tcp_pace_kick?, which will attempt to transmit packets. In addition to
adhering to a pacing rate, this deferred transmission also helps limit the
number of packets queued at the packet scheduler, resulting in smaller
queues in the qdisc. This technique is known as TCP Small Queues (TSQ),
which can potentially lead to lower round-trip times [51]. If pacing is not
activated, a TSQ check (tcp_small_queue_check) will run regardless when
data is to be sent?.

Performance A key difference between internal pacing and pacing in the
scheduler is related to the performance demands. In general, pacing in
the scheduler scales better than internal pacing as the number of flows
grows large. This is because a single instance of FQ can potentially serve
thousands of flows simultaneously, while internal pacing necessitates a
separate instance for every single flow. This can be attributed to the
difference in timer requirements. Internal pacing requires an hrtimer for
every flow, while FQ uses a single hrtimer to serve all flows associated
with the qdisc®®. This can in turn lead to a higher frequency of interrupts
when using internal pacing [3], which is known to be CPU intensive. The
reason flows cannot share an hrtimer internally, is that a TCP flow lacks the
knowledge of other flows on the system. Implementing such a shared timer
between flows requires extensive synchronization, which seems unfeasible
[54].

In Figure 2.4 we see a comparison of the two pacing methods in use with
BBR. Visually, the pacing patterns appear similar. The initial window
appears to not be paced by either method. It is also important to note that,
while the flows are paced, it is not on a per-packet level, as the pacing is
done in terms of distributing small bursts of packets across time.

221 jnux-kernel-5.19 | tcp_update_skb_after_send [49].
231 inux-kernel-5.19 | tcp_pace_kick [50].

247 inux-kernel-5.19 | tcp_small_queue_check [52].

251 inux-kernel-5.19 | sch_fq.c [53].

27

N Ul = W N —

High-resolution timers

High-resolution timers in the Linux kernel are implemented using the
hrtimer API This is a completely separate API from the timer API, which
is used for timers with lower precision. The hrtimer API is used for timers
with a precision of nanoseconds and is implemented using a Red-Black tree
[55].

The hrtimer is used where high precision is required such as in the
pacing_timer. The original timer API is best suited for timeouts where

it is more important to know that the timer has expired, rather than the
exact time it expired [55].

Modes The hrtimer can be configured into different modes depending
on the needs. The different modes are [56]:

e HRTIMER_MODE_ABS: The time value is absolute, that is, it specifies a
specific point in the future.

e HRTIMER_MODE_REL: The time value is relative to the current time.

e HRTIMER_MODE_PINNED: The timer will be bound to a specific CPU core
so that it will not be migrated to another core by the scheduler.

* HRTIMER_MODE_SOFT: The timer function will be executed in soft-irq
context, that is, it can be interrupted or delayed by other processes.

¢ HRTIMER_MODE_HARD: The timer function will be executed in hard-irq
context, that is, it cannot be interrupted or delayed by other processes,
even on PREEMPT_RT.

These modes can be combined to create a more specific timer. For example,
the pacing_timer is configured to use the HRTIMER_MODE_ABS_PINNED_SOFT
mode, which means that the timer is absolute, pinned to a CPU core, and
executed in soft-irq context.

The enum hrtimer_mode is what defines the different modes. The code in
Listing 2.3 shows the different modes and their values. The code listing is
taken from the Linux kernel source code®.

/ *

* Mode arguments of xxx_hrtimer functions:

*

* HRTIMER_MODE_ABS - Time value is absolute

* HRTIMER_MODE_REL - Time value is relative to now
* HRTIMER_MODE_PINNED - Timer is bound to CPU (is
only considered

* when starting the timer)

261 inux-kernel-5.19 | enum hrtimer_mode [56].

28

11
12
13
14
15
16
17
18
19
20
21
22

23
24

25
26

* HRTIMER_MODE_SOFT - Timer callback function will be
executed in
* soft irq context
* HRTIMER_MODE_HARD - Timer callback function will be
executed in
* hard irq context even on PREEMPT_RT.
*/
enum hrtimer_mode {
HRTIMER_MODE_ABS = 0x00,
HRTIMER_MODE_REL = 0x01,
HRTIMER_MODE_PINNED = 0x02,
HRTIMER_MODE_SOFT = 0x04,
HRTIMER_MODE_HARD = 0x08,
Covivent) /* Modes hidden in excerpt */

HRTIMER_MODE_ABS_PINNED_SOFT
| HRTIMER_MODE_SOFT,

HRTIMER_MODE_REL_PINNED_SOFT
| HRTIMER_MODE_SOFT,

HRTIMER_MODE_ABS_PINNED

HRTIMER_MODE_REL_PINNED

Covvvivnt) /* Modes hidden in excerpt */

Listing 2.3: enum hrtimer_mode

TSO autosizing

When sending data, the network stack may segment the packet into
several smaller packets. This is called segmentation offloading (TSO),
where the network stack segments the packet into MTU-sized packets
[57]. TSO needs to balance making packets larger for CPU efficiency,
or smaller packets to minimize burstiness. This is done in the function
tcp_tso_autosize, where the general rule is to use larger packet sizes for
flows with lower round-trip times (losses can be repaired quicker), and
smaller packets for long-distance flows to maintain ACK clocking?’.

Transmission of new data

A vital part of TCP is deciding when to send data. In this section, we will
highlight the two main triggers for sending new data. The first trigger is
when the application writes data to a TCP socket. This results in a call
to the TCP API, more specifically the tcp_sendmsg_locked function?®. This
function will create an SKB for the packet and ultimately transfer execution
to the TCP output engine to transmit the packet.

The other trigger for packet sending is through a mechanism called ACK-
clocking. This is core functionality in the TCP stack, where the cwnd

271 inux-kernel-5.19 | tcp_tso_autosize [58].
281 inux-kernel-5.19 | tcp_sendmsg_locked [59].

29

expands when packets leave the network. This occurs in the TCP input
engine (tcp_input.c) in response to incoming ACKs. After processing the
incoming packet, TCP will call the function tcp_data_snd_check® that in
turn calls the TCP output engine to attempt a transmission.

The function responsible for handling the transmission of new packets is
tcp_write_xmit from tcp_output.c. This function pops and transmits
SKBs from the send buffer for as long as the cwnd allows. Before
transmitting, the SKB is subjected to a TSQ check, segmentation and
fragmentation®®. Finally, the SKB is passed on to tcp_transmit_skb for
header construction before handing it off to the IP-layer®!.

291 inux-kernel-5.19 | tcp_data_send_check [60].
301 inux-kernel-5.19 | tcp_write_xmit [61].
311inux-kernel-5.19 | __tcp_transmit_skb [62].

30

Chapter 3

Timer-based TCP

In this chapter, we present a comprehensive specification of the algorithm
that will be implemented in the Linux kernel. Timer-based TCP (TBTCP)
is a complete re-design of TCP that leverages a single timer to progress its
state machine instead of relying solely on the "ACK-clock". This makes
TBTCP a fully paced TCP variant, where packet transmission is initiated as
a consequence of timer expiration.

The scope of this thesis excludes the implementation of recovery mech-
anisms. Consequently, we exclude the explanation of these mechanisms
from this specification. As such, this specification can be thought of as a
simplified version of TBTCP. Even though our specification of TBTCP is
simplified, we still refer to it as TBTCP in this chapter.

Importantly, TBTCP impacts only the sender, while remaining fully
compatible with a standard TCP-receiver. Therefore, it can be deployed
in networks comprising both TBTCP and regular TCP clients and servers.
Congestion control interactions are left to be studied, however. The
contents of this chapter are drawn exclusively from the TBTCP research
paper and personal correspondence with its authors. At the time of writing,
the research paper is unpublished.

Simplifying assumptions

Our algorithm specification makes a few assumptions about TCP usage for
the case of simplicity:

The TCP Timestamps option RFC 7323 [23] is enabled.

A sender always has something to send—there are no periods of
quiescence.

All our sequence numbers count packets, not bytes.

As this specification excludes recovery mechanisms, we assume
regular TCP recovery is implemented. This entails that execution

31

is handed off to TCP to recover losses. Once losses are recovered,
execution returns to TBTCP.

3.1 General design

TBTCP leverages a single timer to progress its state machine. When a timer
expires, it is re-queued with an updated timeout value. The timeout value
is calculated based on the current state of the connection with respect to the
current sending rate.

Unlike traditional congestion control algorithms that employ a congestion
window, TBTCP regulates its transmission rate by means of a novel
sequence number, Ntx. This sequence number is incremented for every
new packet transmitted, and adjusted upon a congestion event. The
algorithm’s primary entry point is the timeout-handler, which is triggered
when the timer expires. Upon a timeout event, the handler updates the
global state, and if allowed by the current state, transmits a new packet.

In addition, the ACK-handler serves as a secondary entry point for the
algorithm and is invoked upon receipt of an ACK. The ACK-handler
updates the global state and recalculates relevant values for use in the
timeout handler.

Variables

Throughout this specification we will refer to the following set of variables
to describe the algorithm:

Name Initial value Description

RTT RTT from SYN-ACK Most recent RTT sample from an ACK.

ssthresh | - This variable is used to determine the back-
off when entering FR.

(a) Well-known TCP variables, used similar to standard TCP

Name Initial value Description

NlastAck | 0 The highest cumulatively acked sequence
number so far. This is called “HighACK” in
RFC 6675 [19].

(b) Well-known TCP variables with new names or slightly different usage

Table 3.1: List of known TCP variables used in Functions 1 and 2, and algorithm 1 and
their initial values. Variables beginning with “N” are sequence numbers. An initial value
of “-” means that initialization is irrelevant (it could be 0, for example), as the variable is
first written by the algorithm.

32

Name

Initial value

Description

Ttx

now

The next scheduled event.

Ntx

w

The sequence number used for calculating the
pacing rate. Note that this is not an actual
packet sequence number, as it begins at 1
and reflects a state associated with a certain
sending rate. It is hence reset to 1 upon an
RTO. The initial window (IW) is a parameter.

Nak

Nitx

The next expected acknowledgement’s se-
quence number based on Ntx.

Tak

now + RTT

Predicted arrival time (at the sender) for the
next expected acknowledgement.

pacingTime

The pacing time (time gap from one packet to
the next) used for the most recent transmis-
sion.

lostPackets

empty

An array to hold the lost packets (with Ntx
and Nak at the time of their first transmission,
denoted by “lostPackets.front.[Ntx or Nak]”)
that are going to be re-transmitted.

postRecovery

False

Flag to enable transmitting new data at the
end of recovery. This is set to True when TCP
enters recovery.

postLoss

False

Flag to enable transmitting new data at the
end of loss recovery.

state

This variable holds the current congestion
control state.

BETA

Constant that denotes the backoff factor for
the sending rate.

Table 3.2: List of new variables used in Functions 1 and 2, and algorithm 1 and their initial
values. Variables beginning with “’N” are sequence numbers, and variables beginning with
“T” are timestamps. An initial value of “-” means that initialization is irrelevant (it could
be 0, for example), as the variable is first written by the algorithm. In this table and in all
code elements, “now” denotes the current time.

33

3.2 Core functions

TBTCP consists of several core functions. The two entry points for the
algorithm are the timeout-handler (Algorithm 1) and the ACK-handler
(Algorithm 2).

Delta calculation

The DT function calculates the pacing time from one scheduled transmis-
sion to the next, in both Slow Start and Congestion Avoidance. Which cal-
culation to use is decided by the state variable, which is set based on the
difference between Ntx and ssthresh. The input of the function is the se-
quence number (Ntx) to calculate from, the state and the number of time
steps to move ahead, k. How many time steps to input is the number of
packets the timeline should progress.

The current algorithm uses an exponential increase function (line 3) in
Slow Start and a linear increase in the Congestion Avoidance state (line 5),
yielding a behavior comparable to a TCP Reno mechanism. The derivation
of the equations in these lines can be found in [63]. The result of this
function is a factor £, where 0 < f < 1. This factor can be multiplied
with the RTT to calculate the pacing delta.

Separating out this logic facilitates replacing equations in order to imple-
ment a different congestion control increase behavior, e.g. CUBIC. This is a
cornerstone in the algorithm design.

Function 1: DT: delta time (how long to wait before transmitting
the next packet) update based on sequence number 7, the state and
k, the number of time steps to move ahead.

1 Function DT ((n, state, k)):

2 if state == SS then

3 ‘ return log2(1+k/n)

4 else

5 ‘ return (sqrt(8*(n+k)-7)/2 - sqrt(8*n-7)/2)
6 end

7 end

Pace

The Pace function will transmit a new packet, update the state, and
schedule the next packet transmission. Additionally, Pace will add the
transmitted packet to lostPackets to keep track of in-flight packets. To
progress the sending rate, Ntx is incremented by one, to signify that a
packet was transmitted. The factor returned from DT is multiplied with

34

the current RTT to find the delta with which to schedule the timer. Pace is
triggered either from timer expiration or when an acknowledgment arrives
later than expected.

Function 2: Pace: transmit a packet and schedule the next event.
Global variables used (read-only): RTT, state
Global variables used (also changed): Ntx, lostPackets, pacingTime, Ttx

1 Function Pace():

2 transmit a new packet and update lostPackets
3 pacingTime = DT (Ntx, state, 1)
4 Ntx +=1
5
/* Schedule the next packet transmission */
6 Ttx = now + pacingTime*RTT
7 end

Slow-start threshold calculation

As in regular TCP, ssthresh is re-calculated when experiencing losses.
In TBTCP, the calculation is based on the amount of in-flight packets at
the time the loss occurred. The result determines at which Ntx the state
transitions between slow-start and congestion-avoidance.

All packets transmitted by TBTCP are stored in the lostPackets list. At all
times, the next packet we want to be acknowledged is found at the head
of this list. By calculating the difference between Ntx and Nak associated
with this packet, we find the number of in-flight packets at the time of
transmission. This gives an estimate of the amount of in-flight packets at
the time of loss, instead of an RTT later, when the loss is discovered. A
back-off factor BETA is then multiplied with the packet estimate to achieve
the final result.

This is especially helpful in slow-start, where the amount of in-flight
packets doubles within an RTT, due to the exponential increase of the
sending rate. Consider the scenario where BETA is set to 0.5 to halve the
sending rate upon loss. If we were to use the number of in-flight packets
at the time of loss, the sending rate would be halved to approximately the
sending rate at the time the packet was transmitted. This has the potential
to cause a double drop, as the sending rate is set to the value that was
already too high.

35

Function 3: ssthresh: calculate the new value of ssthresh based
on the number of in-flight packets multiplied by a back-off factor.
Global variables used (read-only): lostPackets

Function ssthresh():
lostPacketsFront = lostPackets.front;
return max(lostPacketsFront.Ntx - lostPacketsFront.Nak) * BETA, 2)

end

L I

Timeout-handler

The timeout handler is called when the timer expires. There are two paths
of execution based on whether or not the timer fired before we expected
an ACK. If the timer fires before we expect an ACK, Pace will be called to
transmit a packet and schedule a new timer. However, if the timer fires after
we expect an ACK (Tak), the execution will stall until an ACK is received.
This can occur as a result of an increase in RTT, causing the ACK to arrive
later than expected.

Algorithm 1: Timeout handling.
Global variables used (read-only): Ttx, Tk
1 ON EVENT: now == Ttx

/* Normal transmission: we may send, or stall if we wait for an ACK
*/
2 if Ttx < Tak then
3 ‘ Pace()
4 end

ACK-handler

To further understand the timeout-handler, it is helpful to examine the role
of the ACK-handler as the two coincide. The ACK-handler is responsible
for detecting increases in the round-trip time (RTT), which typically arises
from network congestion due to queue buildup.

When in either Slow Start or Congestion Avoidance mode, the ACK-
handler leverages the RTT and the incoming sequence number to compute
a global variable referred to as Tak, which denotes the expected time of
arrival of the next ACK. The timeout handler utilizes this variable in its
operations.

The function is executed once an ACK is received. First, it will update
lostPackets by removing acknowledged packets, as these are no longer
needed. If TBTCP execution resumes after a loss event, either postLoss
(RTO) or postRecovery (Fast recovery) will be set to true. In either of
these events Ntx and Nak are adjusted to decrease the sending rate. In

36

postLoss, the sending rate will be completely reset, while in postRecovery
the sending rate is adjusted based on ssthresh. In both cases, Nak is set
equal to Ntx to signify that there are no packets in flight. It is worth noting
that there may be packets in flight from the recovery phase handled by TCP,
however, TBTCP does not account for these for simplicity. For this reason,
Tak is set to an RTT from now. In the regular case, Tak is adjusted by adding
the computed delta to now.

Lastly, the function checks if Ttx <= now. This condition is true if the
transmission of packets has stalled, as described in the timeout-handler. In
the case of stalling, we can now safely resume transmission of packets by
calling Pace.

Algorithm 2: ACK arrival.

Global variables used (read-only): ssthresh

Global variables used (also changed): RTT, NlastAck, Nak, Ntx, lostPackets,
postRecovery, postLoss

Local variables used: packetsAcked

Inputs: ACK_N.cum: Highest cumulatively ACKed sequence number in the
arriving ACK. RTTSample: RTT from ACK sample

ON EVENT: ACK arrival

Update lostPackets from DupACK and SACK information, if available

if ACK_N.cum <= NlastAck then
L return

RTT = RTTSample

packetsAcked = number of previously unacknowledged packets covered by ACK
NlastAck = ACK_N.cum

if postLoss then

/* Returning from loss recovery */

9 Ntx=Nak =1

B W N =

® N o

10 Ttx = now
11 Tak = now + RTT
12 postLoss = false

13 else if postRecovery then
/* This will happen if we receive a full-ACK */
14 Nitx = Nak = ssthresh * (ssthresh-1) /2 + 1

15 Ttx = now

16 Tak = now + RTT

17 postRecovery = False
18 else

19 L Tak = now + DT(Nak, state, packetsAcked)

20 Nak = Nak + packetsAcked;
21 if Ttx <= now then
2 L Pace() // This was supposed to happen, had the ACK arrived at Tak

3.3 Differences from TCP

Even though the goal of the TBTCP algorithm is to mimic the behavior of
TCP, the way TBTCP achieves this is drastically different. This section will

37

describe the differences between TBTCP and TCP.

Pacing

Pacing is a common concept of regular TCP implementations, but TBTCP’s
pacing is quite different. Regular TCP still uses a congestion window
and only uses pacing to limit bursty behavior. TBTCP is an entirely
paced algorithm that does not use a congestion window in Slow Start and
Congestion Avoidance. Instead, TBTCP uses pacing to dictate both how
much and how fast to transmit data. This is a fundamental difference
between TBTCP and regular TCP.

Congestion Window

TBTCP does not use a congestion window in Slow Start and Congestion
Avoidance, but rather keeps track of a sending rate using Ntx. This is
a radical difference from regular TCP. The congestion window is used to
limit the number of packets that can be sent without receiving an ACK.
Instead, the sending rate of TBTCP is determined by the delta calculations,
as well as an additional mechanism based on Tak, that stalls transmission
if an ACK should have arrived. Despite this different philosophy, TBTCP
will act similarly to regular TCP.

Optimistic transmissions

From the lack of a traditional congestion window in combination with how
the pacing scheme is partially disconnected from the ACK-clock, TBTCP
will send packets earlier than regular TCP. This phenomenon is most
prevalent in the Slow Start phase where TBTCP transmits packets where
regular TCP would instead wait for arriving ACKs before expanding the
cwnd and sending a new burst.

However, this early packet transmission in TBTCP still depends on the
receipt of ACKs, as transmissions will halt if ACKs stop arriving. This is
done in order to not overwhelm the network.

38

Chapter 4

Linux implementation

We have chosen to implement TBTCP in the Linux operating system. Linux
was appealing as it is a widely used and highly relevant open-source
project. Furthermore, it is straightforward to compile, deploy and test on
actual hardware. This is especially true for systems already using Linux, as
compiled kernels can be installed and booted with ease. Additionally, its
support for TCP modules was appealing as it allows developers to develop
new TCP functionality on top of the underlying network stack. We have
chosen to carry out our implementation in the 5.10 Linux kernel, as this
kernel was supported by the hardware we used for testing.

4.1 Scope

The scope of this implementation is to implement the pacing and ACK
logic of TBTCP in Slow Start and Congestion Avoidance, as detailed in
chapter 3. This involves handing off control to the TCP stack whenever
TCP experiences losses and initiates recovery. A few challenges arise from
this. Most notably, we must be able to determine an appropriate rate at
which to send when returning from recovery.

We will achieve this by implementing a pluggable TBTCP module to act
as the state machine and controller. Furthermore, the underlying network
stack should be modified to facilitate implementing the TBTCP algorithm
in a module.

4.2 Strategies

Encapsulating logic
Our implementation strategy involves implementing as much logic as

possible within a TCP module, rather than modifying the underlying
kernel stack. However, we acknowledge that the functionality required by

39

TBTCP is outside the scope of a TCP module. Thus, we intend to modify
the kernel such that it exposes the necessary functionality to TCP modules
while ensuring the support of existing TCP modules in our modified
kernel.

The majority of our implementation is encapsulated in a TCP module,
referred to as the TBTCP module from now on. The TBTCP module
resides in a single file, tcp_tb.c located in net/ipv4. Other noteworthy
changes are made in tcp.c, tcp_timer.c, tcp_input.c and tcp_output.c
all located in net/ipv4, in addition to include/net/tcp.h. We have chosen
to omit to document changes not directly relevant to the implementation of
TBTCP.

Naming conventions

We primarily follow the naming convention of the Linux kernel except for
specific TBTCP variables. This is done to make our implementation more
relatable to the TBTCP algorithm specification. These variables are detailed
in Table 3.2.

4.3 Modifying the network stack

This section will detail the changes implemented in the underlying
network stack. These are both changes required to change the behavior
of TCP as well as extend the TCP module API with new functionality.

4.3.1 Event handler callback

We introduce a new callback to the TCP module API called event_handler.
The existing TCP module API is provided in section 2.4 for reference. This
function will serve as the callback associated with the event timer. The
objective of this callback is to allow a TCP module to control a general-
purpose timer with an associated callback that can be set by the module.
The module is responsible for both queuing, re-queuing and if necessary,
stopping the timer in the teardown phase. Additionally, the callback will
allow a TCP module to trigger the transmission of new data.

Initializing the timer

TBTCP needs a single timer to maintain its state machine. This event
timer will effectively handle the pacing aspect of TBTCP, which requires
the timer to fire at a high frequency. To achieve this, we will make use of
a single high-resolution timer, or hrtimer in Linux. High-resolution timers
were previously described in section 2.4. This timer will be referred to as
event_timer from now on.

40

Q1 =~ W

QR g O

11
12
13
14
15

The event_timer will reside in the socket structure that the network
stack maintains for every flow. The timer is initialized in the function
tcp_init_xmit_timers, where a callback function is specified to be
invoked upon timer expiration. The timer is initialized with the mode
HRTIMER_MODE_ABS_PINNED_SOFT, which most notably gives us a timer
using absolute timestamps. The use of absolute timestamps is essential
to implement TBTCP logic.

Timer callback

As previously mentioned, we aim to implement as much logic as possible
in our TCP module. Therefore, the timer callback will simply call the TCP
module and let it decide what to do next. The handler in Listing 4.1 is
defined in tcp_output. c and will first find the expired timer, then proceed
to invoke the event handler callback defined by the TCP module. Lastly,
the function returns the enum HRTIMER_NORESTART which specifies not to
restart the timer, as this is to be done from the TCP module. We call the
event handler inside a critical region, as we do not want race conditions
and unintended behavior when dealing with packet transmissions.

enum hrtimer_restart tcp_event_handler(struct hrtimer
*timer) {

struct tcp_sock *tp = container_of (timer, struct
tcp_sock, event_timer);

struct sock *sk = (struct sock *)tp;

const struct tcp_congestion_ops *ca_ops =
inet_csk(sk)->icsk_ca_ops;

bh_lock_sock (sk);
ca_ops->event_handler (timer) ;

bh_unlock_sock (sk);

tcp_check_space (sk);
sock_put (sk);

return HRTIMER_NORESTART;

Listing 4.1: tcp_output.c: event timer callback

Differences from internal pacing

As detailed in section 2.4, Linux already employs a single hrtimer for each
TCP flow. As explained, internal pacing paces packets to respect a set rate.
It defines intervals where TCP can transmit packets, in addition to when
transmissions should be deferred. In this section, we will explain how our

41

INTERNAL PACING TBTCP PACING

| TCP Module I Update pacing rate TCP Module]

tep_write_xmit()

J,—' Callback tep_write_xmit()

TCP Output Engine

TCP Output Engine

Expiration

Expiration

Figure 4.1: Illustration highlighting the architectural difference between
internal pacing in Linux and the TBTCP pacing framework. In TBTCP,
the output engine calls the TCP module to initiate transmissions. Internal
pacing only allows control by the module through a pacing rate, while
transmissions are initiated by the output module.

implementation of pacing is fundamentally different from Linux’s internal
pacing mechanism.

Time based Our implementation of pacing is based on time, rather than a
rate. This fundamental difference allows for the implementation of pacing
schemes using timestamps, rather than calculating the amount of bytes to
send in an interval.

Fully paced The TBTCP pacing framework allows for fine-grained pacing
of packets. This facilitates complete control of every single packet
transmission. Internal pacing is limited to only inferring pacing times
through a set pacing rate.

TCP module control The TBTCP framework can be fully controlled
through a TCP module. Internal pacing in Linux supports controlling the
rate of pacing through modules, however, the transmission itself is initiated
by the underlying TCP stack. Our pacing framework allows for initiating
packet transmission through the use of tcp_write_xmit!, directly from the
module.

Performance requirements We expect our pacing framework to intro-
duce a tradeoff between control and performance. Triggering a timer for
every single packet transmission is CPU-intensive, as the rate of interrupts
will be high. Internal pacing mitigates this by allowing pacing in intervals,
and deferring transmissions when needed through the use of the timer.

11inux-kernel-5.19 | tcp_write_xmit [61].

42

SIS

QO 3 O\ U1 =~

= W N =

4.3.2 Disable sending triggers

We have previously described certain sending triggers in section 2.4. One
of these is a response to incoming ACKs, which advances the state of a
TCP flow. Among these state advances may be expanding the cwnd and
trigger the transmission of new packets. However, these ACK-clocked
transmissions from the TCP stack are counter-intuitive to TBTCP, as we
want to have fine-grained control over when packets are sent. Thus, we
must disable these sending triggers entirely when TCP is not recovering
from losses.

Disable ACK triggered transmissions

The function responsible for checking if data can be sent is data_snd_check
in tcp_input. c. This function must be modified to ensure that new data is
not transmitted when TBTCP is operational.

static inline void tcp_data_snd_check(struct sock x*sk)

{

if (tcp_is_tb(sk) && sk->sk_state == TCP_ESTABLISHED
&% (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery &&
inet_csk(sk)->icsk_ca_state !'= TCP_CA_Loss))

return;

tcp_push_pending_frames (sk);

tcp_check_space (sk);
}

Listing 4.2: tcp_input.c: send new data on ACK

The modified function in Listing 4.2 will perform an early return if
TBTCP is the module in use and TCP is in the ESTABLISHED state while
not recovering from losses. Notice that we still allow for ACK-clocked
transmissions when TCP is recovering from losses. This is vital for TCP
recovery to function properly.

Disable application triggered transmissions

As we do not want application pushes to influence the behavior of TBTCP,
we disable them entirely. This can be achieved by modifying the API
exposed to the application socket in the tcp. c file.

if (Ytcp_is_tb(sk)) {
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames (sk, mss_now,
TCP_NAGLE_PUSH) ;

43

a1

N O

BN

[*))

1

} else if (skb == tcp_send_head(sk))
tcp_push_one(sk, mss_now);

Listing 4.3: tcp_input.c: excerpt from tcp_sendmsg_locked

if ('tcp_is_tb(sk))
__tcp_push_pending_frames (sk, mss_now, nonagle);

Listing 4.4: tcp_input.c: excerpt from tcp_push

if ('tcp_is_tb(sk)) {
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames (sk, mss_now,
TCP_NAGLE_PUSH) ;
} else if (skb == tcp_send_head(sk))
tcp_push_one(sk, mss_now);

Listing 4.5: tcp_input.c: excerpt from do_tcp_sendpages

Here we disable code related to pushing of data in the tcp_sendmsg_locked,
tcp_push and do_tcp_sendpages functions if TBTCP is the active TCP
module.

44 TBTCP module

With necessary modifications made to the underlying TCP stack, we can
now implement a pluggable TBTCP module on top of it. The following
section will be spent thoroughly describing the implementation of this
module.

4.4.1 Private fields

To hold the state for each TBTCP flow, we define a data structure to be
contained in the private field of a socket. As explained in section 2.4, the
private field is limited to 104 bytes. We define the TBTCP data structure as
follows:

struct tcp_tb {

44

Q1 = W N

R 3 O

11
12
13
14

u6é4 Ttx;

u32 Ntx;

u32 ssthresh_Ntx;

u32 NlastAck;

u32 Nak;

u64 Tak;

u32 HighData;

u6d4 rtt;

bool postRecovery;

enum tcp_ca_state state;
struct list_head lostPackets;
bool stalled;

Listing 4.6: tcp_tb.c: TBTCP data structure

The structure totals 80 bytes and contains the data necessary to maintain
our TBTCP state machine. The majority of the fields can be mapped to
the TBTCP specification in chapter 3. The remaining fields are explained
below:

rtt contains the latest RTT sample.

postRecovery is an indicator that recovery has ended. The TBTCP
module must know this to synchronize state when transitioning back
to OPEN from a recovery phase.

state is used to hold the current tcp_ca_state. These states are
described in section 2.4.

lostPackets is a linked list of packets sent, but not yet acknow-
ledged. It is used to synchronize the sending rate when transitioning
back to OPEN from a recovery phase.

stalled is a flag that determines if transmissions are stalled in
anticipation of an ACK.

44.2 Utility

Throughout this section, several utility functions will be used in the code
listings. We detail these functions briefly below:

start_event_timer queues a given timer with a given timestamp.
cancel_event_timer cancels the given timer.

tcp_tb_in_slow_start compares Ntx and ssthresh_Ntx to check
whether or not TBTCP is in slow start.

45

NN Ul = W N =

€3]

QO 3 O\ U1 =

11
12
13
14
15
16
17
18
19

Tracking transmitted packets

To maintain the lostPackets array we have used the Linux kernel’s linked
list implementation. We define a data structure to hold the information for
each packet in the list:

struct tb_packet {
u32 Ntx;
u32 Nak;
u32 seq;
u64 time;
struct list_head 1list;

Listing 4.7: tcp_tb.c: struct tb_packet

We store the Ntx of the sent packet, the Nak at the time of transmission, the
TCP sequence number and the time of transmission. We have to store the
TCP sequence number to be able to know which packets to remove when
acknowledgments are received.

To more easily manage this list in the rest of the implementation we created
two utility functions add_packet and remove_packets.

static int add_packet(struct tcp_tb *ca, u64 bytes_sent,
u32 Ntx, u32 Nak, u64 time) {
struct tb_packet =*packet;
if (ca->lostPackets.next == NULL ||
ca->lostPackets.prev == NULL) {
return -1;
}
packet = kmalloc(sizeof (struct tb_packet), GFP_ATOMIC);
if (!'packet) {
return -1;

}

packet ->Ntx = Ntx;
packet ->Nak = Nak;
packet ->seq = seq;
packet->time = time;

list_add_tail (&packet->1list, &ca->lostPackets);

return O;

Listing 4.8: tcp_tb.c: add_packet

add_packet adds a packet to the lostPackets list. This function is used in
the tcp_tb_pace function to add a packet to the list when it is sent.

46

N Ul = W N =

10
11
12
13
14
15
16
17
18
19

O O 00N ONUlk WN -~

—_

static int remove_packets(struct tcp_tb *ca, u32 seq) {
struct tb_packet *packet;
struct list_head *pos, *q;

int i = 0;
if (ca->lostPackets.next == NULL ||
ca->lostPackets.prev == NULL) {
return -1;
}
list_for_each_safe(pos, q, &ca->lostPackets) {
packet = list_entry(pos, struct tb_packet, list);
if (before(packet->seq, seq)) {
list_del(pos);
kfree (packet) ;
i++;
}
}

return ij;

Listing 4.9: tcp_tb.c: remove_packets

remove_packets removes all packets from the lostPackets list that have
been acknowledged. This function is used in the tcp_tb_pkts_acked

function to remove acknowledged packets from the list.

44.3 TCP callbacks

In this section, we will describe the callbacks used for our TBTCP module.
This will give a general overview of the TBTCP module. TCP module

callbacks are detailed in section 2.4.

init and release

The init and release callbacks will be responsible for initializing and
cleaning the module state. init will in addition be responsible for the

initial queuing of the event timer.

u64 now = ktime_get_ns ();
u32 IW = tp->snd_cwnd;

ca->postRecovery = false;
ca->rtt = max(tp->srtt_us >> 3, 1U) * 1000;

ca->HighData = 1;

ca->ssthresh_Ntx U32_MAX;
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
ca->NlastAck = tp->snd_una;

47

11
12
13
14
15
16
17
18
19
20
21

ca->Ttx = now;

ca->Ntx = IW; // initial window size
ca->Nak = ca->Ntx;

ca->Tak = now + ca->rtt;

ca->stalled = false;

INIT_LIST_HEAD (&ca->lostPackets) ;

/* start initial timer */
start_event_timer (sk, timer, ca->Ttx);

Listing 4.10: tcp_tb.c: excerpt from tcp_tb_init

In tcp_tb_init, we first initialize the tcp_tb data structure. The TBTCP-
specific variables are initialized according to Table 3.2. The rtt field is
initialized to the smoothed RTT value from the TCP socket, as we have
yet to receive an RTT sample from an ACK.

Lastly, we trigger the event timer with an instantaneous expiration. We are
able to start the timer here, as init is called as TCP enters the ESTABLISHED
state. The timer is set to trigger immediately as there is no need to pace the
first packet in the flow. We therefore set the estimated ACK arrival time,
Tak to the current RTT.

struct hrtimer *timer = (struct hrtimer*) &tp->event_timer;
cancel_event_timer (timer) ;

Listing 4.11: tcp_tb.c: excerpt from tcp_tb_release

When the transmission closes, tcp_tb_release will be invoked to cancel
the timer in the case that it is still running.

ssthresh

We implement the mandatory ssthresh callback with the function
tcp_tb_ssthresh. Specifically, this function is called when TCP enters re-
covery to calculate the new value of ssthresh. This is necessary as we
want to set ssthresh to a value that corresponds to the sending rate that
was used for the lost packet.

48

N~

N ON U1 = W

10
11
12

Q1 = W N =

struct tcp_tb *ca = inet_csk_ca(sk);

struct tb_packet *lostPacketsFront =
list_first_entry(&ca->lostPackets, struct tb_packet, list);
u32 ssthresh;

...

ssthresh = max(((lostPacketsFront ->Ntx -
lostPacketsFront ->Nak) * beta) / TBTCP_BETA_SCALE, 2U);

...

ca->ssthresh_Ntx = ssthresh;
return ssthresh;

Listing 4.12: tcp_tb.c: excerpt from tcp_tb_ssthresh. (...) indicates that
code that is not revlevant to this heading has been removed.

To achieve this, we find Ntx of the packet that was lost by checking the
lostPackets list. The Ntx in this case describes the sending rate at the
moment the lost packet was sent. Subsequently, we multiply with a module
parameter beta and then divide this sending rate by TBTCP_BETA_SCALE,
which is a constant that denotes the scale of which the beta parameter
should exist in. TBTCP_BETA_SCALE is set to 1024, so to halve the sending
rate, beta should be set to 512. Lastly, we set ssthresh_Ntx to the
calculated value and return it.

event_handler

The event_handler callback is responsible for handling the event timer.
This callback will fire upon timer expiration. Since we have not implemen-
ted the recovery mechanisms of TBTCP, the callback is trivial. It will simply
call tcp_tb_pace to pace the next packet if the state allows for it and we are
not in recovery.

If the timer fires after we should have received an ACK, we will set the
stalled flag to true, to wait for an ACK before transmitting a new packet.
The stalled flag will be read by the ACK-handler to handle the stall once
an ACK is received.

if (ca->Ttx < ca->Tak && ca->state < TCP_CA_Recovery) {
tcp_tb_pace (timer);

} else {
ca->stalled = true;

}

Listing 4.13: tcp_tb.c: excerpt from tcp_tb_event_handler

49

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

tcp_tb_pkts_acked

The tcp_tb_pkts_acked callback is responsible for handling ACKs. It is
called when an ACK is received. The callback will update the state of the
TBTCP flow and call tcp_tb_pace if the stalled flag is active.

if (sample->rtt_us > 0)
ca->rtt = rtt_ns;

if (before(tp->snd_una, ca->NlastAck) || tp->snd_una ==
ca->NlastAck) {
return; // ignore duplicate acks

¥
ca->NlastAck = tp->snd_una;
removed = remove_packets(ca, tp—>snd_una);
if (ca->state == TCP_CA_Loss) {
return;
}
if (ca->state == TCP_CA_Recovery) {
ca->postRecovery = true;
return;
¥

if (ca->postRecovery) {
ca->Ntx = tp->snd_ssthresh * (tp->snd_ssthresh - 1) /

2 + 1;
ca->Nak = ca->Ntx;
ca->Ttx = now;
ca->Tak = now + ca->rtt;
ca->postRecovery = false;
} else if (removed > 0) {
ca->Tak = now;

kernel_fpu_begin();

delta = delta_time_mult_rtt(ca, ca->Nak,
sample ->pkts_acked, ca->rtt);

kernel_fpu_end () ;

ca->Tak = ca->Tak + delta;

ca->Nak = ca->Nak + sample->pkts_acked;

}

if (ca->stalled) {
ca->stalled = false;
tcp_tb_pace (&tp->event_timer, now);

Listing 4.14: tcp_tb.c: excerpt from tcp_tb_pkts_acked

Here the RTT is updated on every ACK to make sure we always keep
the latest RTT sample. We then check if the ACK is a duplicate. If it is,
we simply ignore it. If it is not, we remove all packets up to the ACKed

50

sequence number from the list of un-ACKed packets.

If TCP is in the LOSS state, we return, as we let the TCP stack handle this.
If we are in recovery, we set the postRecovery flag to true and return. This
flag will be used to determine if we should reset the state of the flow when
we exit recovery.

If we are not in recovery, we check if we are in the post-recovery state.
To remedy not knowing the timestamps of potential packet transmissions
while TCP is in recovery, we instead reset the TBTCP state. To do this,
we must first set a value for Ntx, to start at an appropriate sending rate.
We calculate this by translating the standard TCP ssthresh value to the
corresponding Ntx. This is done according to this quadratic function:

ssthresh * (ssthresh—1)/2+1;

We then update Ttx and Nak to expect the next ACK to arrive at an RTT
from now.

If no packets were removed from the lostPackets list based on the
sequence number in the ACK, we simply update the next expected ACK
arrival time to wait for the next ACK. This could occur if we receive ACKs
out-of-order. The execution flow is visualized in Figure 4.2.

Remaining callbacks

To fulfill the requirements for implementing a TCP module, which involves
the implementation of the required callbacks, we have opted to use the
Reno implementation for the remaining callbacks. We choose to not go
into detail on these callbacks, as they are not relevant to our TBTCP
implementation. These callbacks are cong_avoid and undo_cwnd, both of
which are essential for maintaining the cwnd for when TCP enters recovery.

4.4.4 Other functions

In this section, we will describe the other functions that are used in the
implementation of TBTCP.

tcp_tb_pace
The tcp_tb_pace function is responsible for pacing the next packet. It will

calculate the time for the next packet to be sent and queue a timer to trigger
at that time.

51

ACK arrives

l

Update RTT

Yes
—
No
Post-recovery
‘f’f’f”” Else

Valid ACK
Synchronize (HEW highACK)
state with TCP

Calulate next
ACK arrival
estimation

J

TBTCP
stalled?

YES\L

Transmit

N

packet

Figure 4.2: Flowchart detailing an ACK arrival event. The flowchart is
based on the code in Listing 4.14.

52

W N =

O N\ O\ U1 =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

snd_nxt = tp->snd_nxt;
if (!sock_owned_by_user(sk)) {

tcp_write_xmit (sk, tcp_current_mss(sk), TCP_NAGLE_OFF,
2, sk_gfp_mask(sk, GFP_ATOMIC));

} else {
start_event_timer (sk, timer, ktime_get_ns());
return;
}
/* start a new initial timer if nothing was sent */
if (tp->bytes_sent == 0) {
ca->Ttx = ktime_get_ns ();
ca->Tak = ktime_get_ns () + ca->rtt;

start_event_timer (sk, timer, ca->Ttx);
return;

}

add_packet (ca, snd_nxt, ca->Ntx, ca->Nak, now);
ca->HighData = ca->HighData + 1;

kernel_fpu_begin();
pacingTime = delta_time_mult_rtt(ca, ca->Ntx, 1, ca->rtt);

kernel_fpu_end ();
ca->Ntx = ca->Ntx + 1;
ca->Ttx = now + pacingTime;

/* queue next event */
start_event_timer (sk, timer, ca->Ttx);

Listing 4.15: tcp_tb.c: excerpt from tcp_tb_pace

Here we call tcp_write_xmit to transmit the next packet. We invoke
tcp_write_xmit with the push_one argument equal to 2. This tells TCP
to force the transmission of at most one packet, regardless of the cwnd
quota. We then add the transmitted packet to the list of un-ACKed packets.
Subsequently, we calculate the time for the next packet transmission and
queue a timer to trigger at that time.

We use the total number of bytes sent from the TCP socket as the
cumulative sequence number when we add packets to our list of un-
ACKed packets. This is because the TCP socket will send all packets in
order, so the cumulative sequence number will be the same as the sequence
number of the last packet sent. This corresponds to the cumulative bytes
ACKed in our ACK handler where we remove packets from the list.

We have an extra check to see if tcp_write_xmit actually sent a packet. If
it did not, we set Ttx and Tak to the initial values and restart the timer. We
saw this occurring occasionally at the initial phase of a transmission. We
suspect this is due to an empty send buffer. The complete execution flow is
visualized in Figure 4.3.

53

Timer fires

l

TCP in
RECOVERY?

Should an
ACK have
arrived?

Transmit packet
and calculate
new pacing time

l

Queue
timer

Figure 4.3: Flowchart detailing a timer expiration event. The flowchart is
based on the code in Listing 4.15.

54

W N =

4.5 Implementing floating-point support

In this section, we will detail how we made our TCP module support
floating-point calculations. We will first speak on why we need this feature.
We will then look into how, if at all, the kernel handles floating-point
calculations. Lastly, we will describe how we handle floating-points in our
implementation.

The need for floating-point calculations

As discussed in chapter 3, TBTCP queues a timer for every single packet to
transmit. To determine the pacing time from one transmission to the next,
the function delta_time is used. In the basic implementation TBTCD, the
delta_time calculation for the slow-start branch is based on the logarithm
base 2 of (1+(k/n)). This results in a factor £, where £ < 0. The problem
remains the same in the congestion-avoidance branch, where instead of
logarithms, square-root calculations are used. Division operations are also
used in both branches. To be able to calculate these factors at all, we will
need support for floating-point calculations.

Kernel support for floating-points

Currently, the kernel is not engineered to support floating-point operations
in kernel space. The main reason for this is that it is expensive to support
the use of a floating-point unit (FPU). In essence, this would require the
kernel to save and restore additional state every time a kernel task is
preemptively switched out.

Another reason for the lack of FPU support is that in most cases, the
kernel does not need floating-points. Most operations either do not require
floating-point precision or can be converted to using integers. In our case,
conversion to using integers is not trivial.

Enabling FPU support

Even though it is not encouraged by the kernel development community,
there is a way to enable support for FPU operations. In a mail from Linus
Torvalds he speaks on how to perform floating-point calculations "safely"
on x86 architectures [64]. Here, he explains the use of two macros to disable
preemption temporarily.

kernel_fpu_begin();
/* non-premptive code goes here */
kernel_fpu_end();

Listing 4.16: Usage of FPU macros

55

O IO\ U1 = W N —

S i W WY
U= WO DN = OO

The use of kernel_fpu_begin and kernel_fpu_end will temporarily dis-
able preemption for the enclosed instructions®. This sequence will initially
disable preemption with the macro preempt_disable. This is followed by
saving the current FPU state to memory through the use of the FXSAVE in-
struction. This is done to preserve the state of the current process. The
kernel is now able to manipulate these registers freely without corrupting
the state of user processes. It is important to note that when writing non-
preemptive code, to not execute code that has the potential to cause faults
or traps to prevent undefined behavior.

Floating point calculations

As indicated, calculating logarithms and square roots of floating point
numbers proved to be non-trivial in the kernel. To work around this, we
made use of approximations of these calculations.

Calculating the base 2 logarithm

To achieve this, we make use of a log2 approximation implemented in the
Fastapprox library [66]. The function shown in Listing 4.17 is borrowed
from this library which implements an approximation of a log2 calculation.
This fits our use case well, as we are able to trade off accuracy in the
calculation as there is significant overhead related to queuing the timer.

float log2_of_number (float x) {
union {
float f£f;
uint32_t i;
} ovx = {x};
union {
uint32_t i;
float f£f;
} mx = {(vx.i & OxOO7FFFFF) | 0x3f000000};
float y = vx.i;
y *= 1.1920928955078125e-7f;
return y - 124.22551499f
- 1.498030302f * mx.f
- 1.72587999f / (0.3520887068f + mx.f);

Listing 4.17: Usage of FPU macros

Calculating square roots

To calculate the square root of a floating point number we have made use
of an iterative approach. The Babylonian or Heron’s method is a way of

21inux-kernel-5.19 | x86 fpu api.h [65].

56

R IO U1 = W IN -

11
12
13
14
15
16
17
18

NN Ol W N -

Qo

approximating the square root of a number iteratively [67]. It works by
starting with an initial guess and tolerance, then iterating on the guess to
approach a tolerable approximation.

double sqrt_double (double x) {
double guess = x / 2;
double epsilon = 0.000001;
int 1i;

for (i = 0; i < 12; i++) {
double diff = guess * guess - X;
if (diff < 0) {
diff = -diff;
}
if (diff < epsilon) {
break;
}
guess = (guess + x / guess) / 2;

}

return guess;

Listing 4.18: Iterative calculation of square roots

Delta calculation

Given that we can now perform floating-point operations, we can compute
the delta calculation described in chapter 3. The delta_time_mult_rtt
function accepts a sequence number (Ntx), time steps (k) and the RTT, to
calculate the pacing time for the next packet transmission.

float res, div;
if (tcp_tb_in_slow_start(ca)) {

div = (float) ((float) k / (float) seq_num);

res = log2_of_number (1 + div);

return res x rtt;
} else {

res = (float)(sqrt_float ((8*(seq_num + k)-7)) /
(float)2) - (float)(sqrt_float((float) (8*seq_num - 7)) /
(float)2);

return res * rtt;

}

Listing 4.19: delta_time_mult_rtt

Depending on whether or not TBTCP is in Slow Start, determined by the
return value of the tcp_tb_in_slow_start function, influences the increase
function to use. If TBTCP is in Slow Start, the increase is exponential, while
a linear increase is used in Congestion Avoidance. Multiplying the RTT
with the resulting factor equals the pacing time to be used for the next

57

N U1 = W —_

N

10
11
12

packet transmission. This function requires the use of kernel_fpu_begin
and kernel_fpu_end macros.

Compiler attributes

To convince the compiler to compile these functions, we give both functions
an attribute of sse2 to indicate that they are to be compiled with sse2
instructions. sse2 instructions are a set of x86 instructions that extend
the capabilities related to floating point operations [68]. This is done by
prefixing the function definition with __attribute__((target("sse2"))).

4.6 Configurable module parameters

To make the TBTCP module configurable at runtime, we add two paramet-
ers, beta and ssthresh_cwnd_based. The beta parameter multiplied by a
constant TCP_BETA_SCALE (set to 1024) is used in the ssthresh calculation to
facilitate a user-defined backoff factor. For example, to use a backoff factor
of 0.5, the beta parameter should be set to 512.

The ssthresh_cwnd_based parameter is used to switch to a conventional
ssthresh calculation rather than using the TBTCP calculation. The main
difference between these is that TBTCP calculates the new ssthresh value by
multiplying the backoff factor with the cwnd (Ntx) value at the time a loss
occurred. The conventional calculation multiplies the current cwnd with the
backoff factor.

struct tcp_tb *ca = inet_csk_ca(sk);

struct tb_packet *lostPacketsFront =
list_first_entry(&ca->lostPackets, struct tb_packet, list);
u32 ssthresh;

if (ssthresh_cwnd_based) {

ssthresh = max((tcp_sk(sk)->snd_cwnd * beta) /
TBTCP_BETA_SCALE, 2U);
} else {

ssthresh = max(((lostPacketsFront ->Ntx -
lostPacketsFront ->Nak) * beta) / TBTCP_BETA_SCALE, 2U);
}

ca->ssthresh_Ntx = ssthresh;
return ssthresh;

Listing 4.20: Modified tcp_tb_ssthresh with runtime parameters.

58

Chapter 5

Implementation assessment

In this chapter we first describe how we evaluate our implementation. We
detail how and on what we run our kernel and how we record and assess
the features of our TBTCP implementation.

We perform experiments to test and document specific features of our
implementation, to ensure they work as expected. Tools and experiments
are automated through a collection of scripts.

5.1 Testbed

We have conducted all our assessment experiments on physical machines.
We have chosen this, as it is the most realistic environment to test the
limitations of our implementation. This is particularly true when testing
the capabilities of the hrtimer as our implementation is sensitive to
inaccuracies and delays that can be introduced by virtualization. We have
three Linux machines running the following specification:

64-bit, x86 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPU

64 GB memory

10G X550T Network Interface Card

Linux 5.10

Our topology is visualized in Figure 5.1. Here, the client (sender) is
connected to the router through a Gigabit link. The egress path on
the router connects to the server (receiver) and is configured to act as
the bottleneck link. It accomplishes this by stacking several queuing
disciplines (qdiscs); netem to add delay, htb to set bandwidth and a bfifo
queue to act as the buffer.

The client machine is running our modified compiled kernel. In an
attempt to isolate the behavior of our implementation, we have disabled

59

30 ms
0ms
€ >
10 Gb 0ms
CLIENT ROUTER y SERVER
10 Gb

Figure 5.1: Testbed topology running on physical desktop machines. The
buffer component is the egress interface from the router to the server. It
is configured with different delay, bandwidth and buffer sizes across our
experiments.

the following hardware offloading optimization mechanisms - TSO, GSO,
LRO, GRO and UFO. For TCP-specific mechanisms, we have disabled
Explicit Congestion Notifications (ECNs) and enabled the use of Selective
Acknowledgements (SACKs).

5.2 Testing and measurement tools

iPerf

To initiate TCP flows, we have chosen iPerf as our tool of choice. iPerf
generates network traffic by transferring arbitrary data from a client to a
server. Among the supported benchmarking metrics are throughput and
latency [69]. It supports a variety of options such as transfer duration,
socket buffer sizes, and which congestion control algorithm to use.

netem
netemis a qdisc that supports Network Emulation. Amoung its features are

emulation of packet loss, delay, duplication and corruption [70]. We only
utilized the delay functionality in our assessment.

Tepdump
To capture packets for later analysis we use tcpdump. This application can

monitor a given network interface and write the packet data to a pcap file
[71].

Synthetic Packet Pairs
SPP is an algorithm for measuring the RTT in networks. It works by

measuring packets IP traffic between hosts without requiring precise time
synchronization. We used this post transmission to analyze the .pcap files

60

30000
« Data packets
_ 25000 ACKs
(D] .
Ne] [
£ 20000, W =10 g
= .
(W] "
c 15000 .
[(F]
=] L]
o L)
& 10000 .
o []
(@] []
" 5000 L
L]
[]
0 . . . : : .
0.00 001 0.02 003 004 005 006 0.07 008
Time

Figure 5.2: Time sequence plot displaying TBTCP per-packet pacing in
Slow Start.

of the client and server. The output is a list of RTT measurements and a
timestamp for each entry [72].

5.3 [Experiments

Here we will detail the experiments we have conducted to assess the
effectiveness of our implementation. We will test various aspects of the
implementation, to determine if it exhibits the intended behavior.

5.3.1 Pacing behaviour

TBTCP is inherently paced, meaning all data packets are to be transmitted
at a specific point in time given by delta_time. This is done by calculating
the delta between packets using the sequence number Ntx - when a packet
is transmitted, Ntx is incremented, and the timer is queued with the
calculated delta. The rate of increase is exponential in Slow Start, and linear
in Congestion Avoidance. This pacing scheme is intended to mimic the
behavior of regular TCP, without relying on the cwnd. The pacing scheme
can also be altered by simply modifying the calculation in delta_time.

Pacing in Slow Start

With an initial window of 10 (as is standard in Linux) the exponential per-
packet pacing pattern is showcased in Figure 5.2. Visually, this results in
a smooth initial increase of the transmission rate. This concept is further
visualized as a delta time plot in Figure 5.3. This depicts fine-grained

61

0.0040¢

0.0035¢

0.0030F

0.0025¢

0.0020¢

Inter-packet Time (seconds)

0.0015¢

0.0010¢

0 10 20 30 40 50
Packet Number

Figure 5.3: Delta time plot displaying TBTCP per-packet pacing in Slow
Start.

pacing, where, after a packet transmission, a new delta is calculated to
queue the timer for the next packet.

3007

« tbtcp
2501, cubic_fq
200}{—*—bbr-fq

=
o
o

Packet Number
=
(O]
o

50¢

i '000".'... ; i i ; i
O.Q)OO 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (seconds)

Figure 5.4: Comparing TBTCP with other pacing schemes.

The per-packet pacing in TBTCP separates itself when compared with other
pacing schemes. In Figure 5.4, we compare TBTCP with BBR and CUBIC,
both utilizing FQ/pacing. TBTCP exhibits a significantly more consistent
curve due to the per-packet pacing, so much so, that the FQ/pacing
variants appear bursty in comparison.

62

300

« tbtcp

_ 280 - cubic_fq
IS « bbr fq
€ 260
=z
© 240
O
@©
- I

220 :

! !

160 0.165 0.170 0.175 0.180 0.185 0.190
Time (seconds)

28950 0.155 0

Figure 5.5: Zoomed in version of Figure 5.4.

w
o

« tbtcp o

_ 257 . cubic_fq Y
8 20— ° bbr_fq :. .o.
E] []
3
Z 15
E’ L] ..
o 10¢ . .
D— [] []

51 s

Qoo 0.02 0.04 0.06 0.08 0.10

Time (seconds)

Figure 5.6: Comparing initial window (IW) pacing.

Pacing the initial window It is notable that neither internal pacing nor
FQ/pacing supports pacing the initial window (IW) of packets. Linux uses
an initial window value of 10 by default. On the contrary, in TBTCP, the
initial window of packets remains fully paced. The reason for this is that
TBTCP lacks a concept of an initial window. Rather, it is based on an initial
rate, which is calculated from the initial window size. Figure 5.6 showcases
this. While studying this diagram, keep in mind that the initial two plotted
packets are related to the handshake process.

Pacing in Congestion Avoidance

The pacing pattern in Congestion Avoidance is linear, however, the pacing
is still done on a per-packet level. Figure 5.7 displays this behavior. The

63

50

40+

301

201

Packet Number

10+

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time (seconds)

Figure 5.7: Delta time plot displaying TBTCP per-packet pacing in
Congestion Avoidance.

increase pattern can now be viewed as gradual and linear. When we view
the zoomed-in delta time plot in figure Figure 5.9, we can see how the
inaccuracies introduced by various sources (timer, write to socket, kernel
scheduler) affect the pacing pattern. These fluctuations are on the scale of
mere microseconds, but they are noteworthy nonetheless.

5.3.2 Stalling logic

A vital part of the TBTCP algorithm is the calculation of Tak from
algorithm 2, which denotes the expected arrival time of the next expected
ACK. It is used to determine if we are allowed to send new data, or if the
algorithm should stall to wait for an ACK.

Expected behaviour

If the client does not receive ACKs within the expected time Tak, the
sending should stall. We expect at most 1-2 packets to be sent, from the
moment where the last ACK was received.

Experiment: discarding acknowledgements

We will conduct this experiment by artificially discarding incoming ACKs
at arandom point in time during the Congestion Avoidance phase of a flow.
We do this by creating an iptables rule on the server to temporarily drop
all outgoing packets to the client.

64

0.00140

0.00135¢

0.00130¢

0.00125}

o
o
o
fary
N
o

0.00115¢

0.00110¢

Inter-packet Time (seconds)
kz
&

0.00105}

10 15 20 25
Packet Number

0.00100

OF
w

Figure 5.8: Delta time plot displaying TBTCP per-packet pacing in
Congestion Avoidance.

0.001220¢}

0.001215¢}

0.001210¢}

0.001205¢

Inter-packet Time (seconds)

0.001200¢}

0 5 10 15 20 25
Packet Number

Figure 5.9: Zoomed in version of the delta time plot from Figure 5.8.

65

TCP Sequence Number

leb

1.36 -

1.34 4

1.32

1.30 A

1.28 ~

1.26 A

1.24 A

122 4

Data packets
ACKs

120
1.120

T
1.125

T
1.130

T
1.135
Time

T
1.140

T
1.145

1.150

Figure 5.10: Time/Sequence plot that displays the arrival of ACKs and
transmission of new data packets, both captured on the client interface.
The vertical line on the x-axis marks the point in time where the last ACK
was received. Parameters used: 10 Mbit bottleneck-bandwidth, 30 ms RTT,
1xBDP queue length.

66

le6

3.8
« Data packets — HIT

ACKs L 120

3.7

100

w
o
|

r 80

RTT (ms)

et
......uu-."'
sow
e .

uu-l“".."" r 60

TCP Sequence Number
w
(&)
|

w
py
1

/

3.2 T T T T
2.80 2.85 2.90 2.95 3.00 3.05

Time

3.3
- 40

Figure 5.11: Time/Sequence plot that displays the arrival of ACKs and
transmission of new data packets with RTT measurements.

Figure 5.10 displays the arrival of ACKs and the transmission of new data
packets over time. We see that after receiving the last ack, the client is
allowed to transmit a single data packet before it stalls.

Experiment: sudden increase in RTT

The calculation of the next expected ACK arrival time, Tak is based on the
RTT. Consequently, stalling can occur when sudden increases in RTT are
detected. In a realistic scenario, sudden RTT increases could be introduced
when sharing a link with a bursty flow, or when new flows are initiated
over the same link. This experiment is conducted by increasing the RTT of
a link that was previously 30ms, to 100ms, using netem.

In Figure 5.11 we observe an instantaneous increase in RTT from approx-
imately 60ms to 100ms. This change results in delaying incoming ACKs,
causing the client to stall. If we examine the effective RTT increase of about
40ms, we notice that the first stall lasts for about this duration. When the
ACK finally arrives, sending resumes, only to stall again as subsequent
ACKs are delayed due to the initial stall.

Figure 5.12 showcases the same experiment on a larger timescale. We
notice that this subsequent stall pattern smoothes out when the sending
rate increases. When the sending rate increases over time, the stalling
duration also decreases gradually before the sending rate finally catches
up. We attribute this to a consequence of ACK-clocking (Tak), as the same
behavior was observed when testing TCP Reno (Figure 5.13).

2Parameters used in Experiment: sudden increase in RTT: 10 Mbit bottleneck-bandwidth,
30ms RTT, 1xBDP queue length.

67

le6

Data packets — RIT
ACKs L 120
74
= ~A1 100
@
o
E s
=
@
g I 80
')
3
3
wn 5
% 60
z L
" /f/
="
=t
4 4 25>
=
’gﬂ I 40
=
F1
ge?”
F T T T T T
3 4 5 6 7 8
Time
Figure 5.12: Zoomed out version of Figure 5.11.
1e6
2.0 I 120
Data packets — FRIT
ACKs
8.5 -
8.0 - > L 100
=
5 o
8 P
£ 7.5+ —Z
E] P
z /4/ +80
7]
o] —~
c 7.0 4 ~
o -
El -~
g o~
& Prie
a 6.54 s
] - 60
[H—F‘J Pr o
A
o~
6.0 Py
zZ
/ -
o / - 40
5.0 ‘ ‘
5.0 5.5 6.0 6.5 7.0 7.5
Time

Figure 5.13: Plot showcasing TCP Reno behavior when experiencing

sudden increases in RTT.

68

RTT (ms)

RTT (ms)

7]
_E — CWND
e ssthresh
[=e]
=
=
—
I
2]
(3]
=
— 30 4
w
wn
2
M 1
N
w
£ 20 A
[:¥]
£
o
[iH]
n
g
£ 10 1
%
15}
=
5
i
5 07
0.00 0.25 0.50 0.75 1.00 125 1.50 L75 2.00

Time (seconds)

Figure 5.14: Plot showcasing the congestion window (cwnd) and Slow
Start threshold (ssthresh) values over time for a Reno flow. RTT: 30ms,
Bottleneck-bandwidth: 5 Mbit, BDP: 18750 bytes. Bottleneck-buffer: 18750

bytes. Average sampling rate 27ms.

5.4 Backoff

TCP Reno in Linux will almost always experience a double ssthresh back-
off after Slow Start. This is because ssthresh is set to half of the cwnd at the
point when loss is detected, and that is almost always exactly too much,
resulting in an additional backoff.

In TBTCP we do the ssthresh back-off a little differently. We keep track
of the in-flight packets throughout the entire transmission. That way we
know the rate at which the loss occurred, instead of when the loss was
detected. We can then set ssthresh to half of the in-flight packets at the
point where the loss occurred. This way, we can avoid the unwanted
double back-off.

The double back-off of Reno is illustrated in the plot in Figure 5.14. The plot
in Figure 5.15 shows the backoff behavior of TBTCP. We see that TBTCP
does not experience the double back-off, and instead resumes at a more
appropriate sending rate.

69

["e]
i — CWND
E‘ ssthresh
w
3
40 -
(LI’
(%))
=
@ 30
=
[}
N
(0]
-+
5 20_
E
o
«F)
0]
E
=
£ 101
=
m
=
Y
(=}
]
g 0l
T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (seconds)

Figure 5.15: Plot showcasing the congestion window (cwnd) and Slow
Start threshold (ssthresh) values over time for a TBTCP flow. RTT: 30ms,
Bottleneck-bandwidth: 5 Mbit, BDP: 18750 bytes. Bottleneck-buffer: 18750
bytes. Average sampling rate 27ms

5.5 Pursuing peak throughput

In this section, we address the steps taken to reach maximum throughput
values. This was an iterative process where we continually assess
and optimize the implementation. As such, this section will not only
contain the assessment of the throughput, but also how we improved the
implementation in the process.

The following subsections highlight the specific challenges we faced and
our solutions to reach peak throughput values. When we came across
issues that were not fully resolved, suggestions are provided on how they
might be addressed in the future.

5.5.1 Timer overhead

From the research questions in section 1.3, we ask about the correlation
between the performance bottleneck of our implementation and the
performance of the hrtimer. TBTCP leverages a single high-resolution timer
(hrtimer) to insert a delay between packet transmissions. To adhere to the
sending rate given by the calculated delta from Ntx, it is crucial to minimize
discrepancies between the calculated Ttx and the actual expiration time of
the timer. In our tests, a failure to conform to the sending rate given by
Ntx, concurrent with an increasing Nak as ACKs are being received, was
observed to precipitate a gradual deterioration of the sending rate until it

70

L60
200 W
1751 55
150
. 50 -
= 1251 E
5 45§
S 100 s
g =]
75 r40 =
501 |35
251
— t30
0 | } } | } }
0 1 2 3 4 5 6 7

Time (seconds)

Figure 5.16: This plot displays the deterioration of the sending rate after
Slow Start. The sending rate deteriorates to a packet-conserving state. This
is indicated by the slow increase of the congestion window, while the RTT
barely moves. Parameters used: 30ms RTT, 20Mbit link, 1xBDP queue.

becomes strictly packet-conserving. In practice, this meant that the link
would remain underutilized for the rest of the transmission, resulting in no
losses and a near-constant RTT, as can be seen in Figure 5.16. Figure 5.17
shows the stagnating throughput for the same transmission.

In the scenario where a packet is set to be transmitted at time Ttx given
by the rate Ntx, the subsequent ACK should arrive by time Tak given by
Nak. However, if a delay d is introduced from timer overhead, the packet is
instead transmitted at time Ttx + d. If the next packet to be sent is queued
relative to this delayed expiration time, the added delays accumulate,
effectively displacing the intended timeline of packet transmission.

The problem becomes apparent as the expected ACK arrival time, Tuk,
fails to compensate for this accumulated delay in the sending rate. If the
deviation between Ttx and Tak becomes sufficiently large, we see from the
algorithm that the condition for pacing (Ttx < Tak) will fail, causing stalls.
The occurrence of undesired stalls diminishes the difference between Ntx
and Nak, primarily due to a gradual decrease in in-flight packets. This
effectively means that we expect ACKs faster than we can transmit new
packets, as Nak grows faster than Ntx.

To investigate this, we measured the timer overhead in Figure 5.18.
This process entailed comparing the discrepancies between the intended
expiration time Ttx and the actual expiration time now (obtained via
ktime_get_ns()). The now value is compared with Ttx in the TBTCP module
event_handler, within a critical region where the socket is locked. It is
noteworthy that these measurements also include the interval of time from
the firing of the timer until execution reaches the event_handler.

In our implementation, we account for these timer delays by queueing the
subsequent timer based on the enqueued expiration time Ttx, rather than

71

w
o
L

N
w
L

N
o
L

Throughput (Mbit/s)
=
w

=
o
L

0 1 2 3 4 5 6 7
Time (s)

Figure 5.17: This plot displays the stagnating throughput measured on a
100ms interval. Ref. Figure 5.16 for transmission parameters.

1 1 L2 1 2

T
0 100 200 300 400
Delay (ps)

Figure 5.18: A Letter-Value Plot of the intended versus the actual expiration
time of the hrtimer, rounded to the nearest microsecond. The boxes
represent different quantiles in our data. The median delay was observed
to be 2 ps, while the average delay was 6.32 ps. Over 40 000 measurements
are plotted.

72

107

091

0.8f

0.7

0.6

0.5¢F

CDF

0.4r

0.3f

0.2

0.1p

0.0

0 500 1000 1500 2000 2500
Execution Time (nanoseconds)

Figure 5.19: A CDF of the execution time of a delta calculation in
nanoseconds. The median execution time was observed to be 420 ns, while
the average execution time was 442 ns. Outliers have been removed for
more clarity in the data.

the actual expiration time now. This mitigates the effects of timer overhead,
as we effectively circumvent displacing the pacing timeline. However, this
approach comes with a trade-off, as Ttx has the potential to lag behind
now when the sending rate demands that the timer fires with intervals
smaller than the timer overhead. In addition, one has to account for the
overhead related to tasks such as packet transmission (Figure 5.20) and
delta calculation (Figure 5.19).

This requires modifications in tcp_tb_pace, where instead of using
ktime_get_ns() to fetch the current timestamp, we use the timestamp that
the expired timer was enqueued with (Ttx). This timestamp is then added
with the calculated delta to determine the next expiration time.

5.5.2 iPerf buffer sizes

When running iPerf on higher bandwidths, we encountered issues related
to the size of the socket buffer, specifically on the client side. iPerf will
push data to the TCP socket in intervals, thereby filling up the buffer. Based
on our findings, the combination of small socket buffers and high sending
rates may potentially lead to a scenario where the sending rate exceeds the
rate at which iPerf can push data to the socket. This resulted in significant
gaps in the sending pattern, where TBTCP was shown to exhibit bursty
behavior when the sending finally resumed.

The behavior was identified in the packet trace, where a data packet with
the PSH flag set was observed. After said packet, there was a gap in

73

107 e e o

091

0.8f

0.7

0.6

0.5¢F

CDF

0.4r

0.3f

0.2

0.1p

0.0

10 20 30 40 50
Execution Time (microseconds)

°h

Figure 5.20: A CDF of the execution time of the function tcp_write_xmit,
reponsible for queuing packets for transmissions. The median execution
time was observed to be 6 ps, while the average execution time was 6.95
ps. Outliers have been removed for more clarity in the data.

the sending rate for multiple milliseconds, although ACKs were being
received. The PSH flag indicates that the receiver should not wait for
subsequent data packets before pushing data to the application [5]. If the
PSH flag is not set, the receiver may combine the data from subsequent
packets before pushing data to the application. The client may set this flag
when transmitting the last buffered segment from the application. This
indicated that the behaviour could be introduced by iPerf. We theorize
that this frequent writing to the TCP socket results in a lock-out effect, where
the TCP stack is unable to use the socket when it is being written to. This
causes the TBTCP timer to fall behind, leading to a burst of packets when
sending resumes, ref. Figure 5.21.

To limit overhead from iPerf data writes on connections with higher
bandwidths, we may increase the socket buffer write size on the client.
On Linux systems, the maximum send socket buffer size is set in
/proc/sys/net via the option wmem_max [73]. Figure 5.22 displays the
results of an increased client write buffer. There are still short gaps in the
sending, however the interval between these gaps are significantly larger.

74

70

=3
=}

Round Trip Time (ms)
w

=)

T

40 1

30

I
o 10 20 30 40 50
Time (s)

Figure 5.21: Plot of the RTT over time for a TBTCP transfer with 416 Kb
sender buffer size. After a certain sending rate is reached, the RTT drops at
a regular interval due to gaps in transmission.

100 -

80 -

60 -

Round Trip Time (ms)

a0

Time (s)

Figure 5.22: Plot of the RTT over time for a TBTCP transfer with increased
sender buffer size.

75

5.5.3 Experiencing loss without reaching link speed

During our throughput testing, we encountered unexpected packet loss
before reaching the anticipated link speed limits. We grappled with
identifying the root cause until we examined the netem configuration in
the router. netem, a tool for emulating network conditions, has a 1limit
parameter which dictates the maximum number of packets its queue can
accommodate when adding delay [70]. Once this threshold is reached,
we suspected that subsequent incoming packets are dropped. To give an
example of the limit needed for a high bandwidth transfer of 1 Gbps
bottleneck bandwidth and 50 ms delay:

1 Gbps = 1,000, 000, 000 bits per second
= 125,000, 000 bytes per second

125,000, 000 bytes per second
1500 bytes MTU size

83, 333 packets per second x 0.05 = 4, 166 packets every 50 ms

= 83, 333 packets per second

In a mail from Stephem Hemminger [74] he also recommends setting the
limit parameter to 50% more than the rate x delay, making the final packet
limit from the example 4166 x 1.5 = 6249.

Our configuration was initially set to a limit of 1000 packets. Upon
increasing this 1imit in netem, we eliminated the losses, allowing for a
more comprehensive assessment of our implementation’s true throughput
capabilities and limitations.

It's important to note that this particular challenge was not directly linked
to any intrinsic flaw or limitation within our TBTCP implementation
itself. Instead, it underscores the significance of ensuring that testing
environments and tools are meticulously configured to prevent unintended
obstructions during performance evaluations.

5.5.4 ACK Processing

We were aware that the socket gets locked during both send and ACK
processing. Given that our algorithm paces packets individually and
doesn’t bundle them, the socket remains locked more frequently than in
standard TCP transmissions.

While the socket is locked, no other socket operations can be executed.
This means that while processing an ACK, we cannot send packets and
visa versa. This is a problem, as we want to send packets as frequently as
possible to achieve the highest throughput. The more time the socket is
locked, the less time we have to send packets.

To measure this we minimized the time spent processing ACKs by enabling

76

le6

_s.81eb 6.0
38 3
€ 5.71 €59
2 2
v 5.61 0 5.8
|9} o
c [
$5.5; $5.7
o o
& &
D54 056
(S S

%302 0303 0.304 0305 0.306 0.307 0.308 >°304 0305 0.306 0307 0.308 0309 0310
Normalized Timestamp (s) Normalized Timestamp (s)

Figure 5.23: 10 Gbps, 30ms. Plot illustrating the end of Slow Start with
delayed ACKs enabled (right) and without (left). Configured with an
undersized netem limit, clarifying the end of Slow Start.

2000 2000
1750 Sample rate: 1000 us 1750 Sample rate: 1000 us
| Sample rate: 30000 us | Sample rate: 30000 us
g 1500 —— Sample rate: 60000 us g 1500 { —— Sample rate: 60000 us
e}
= 1250 = 1250 ‘
5 5
a2 1000 2 1000
=y =y
g 750 g 750
e e
£ 500+ £ 500+
2504 250
Q 0 -
0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30 0.35
Time (seconds) Time (seconds)

Figure 5.24: 10Gbps link speed, 30ms delay, adequate netem limit, no loss.
This plot showcases the peak throughput with (right) and without (left)
delayed ACKSs activated.

delayed ACKs on the receiver. This is not a responsibility of the TBTCP-
host, but rather the receiver, so it is an "impossible" optimization of TBTCP.

As anticipated, enabling delayed ACK (delack) enhances maximum
throughput. With fewer ACKs from the receiver, the sender can dispatch
more packets before the socket gets locked by ACK processing.

The left graph of Figure 5.23 shows very bursty throughput at the end of
Slow Start. The system has to process a considerably higher number of
ACKs, leading to more frequent socket locking. However, after enabling
delayed ACKs and rerunning the test, the right graph of the same figure
shows a smoother performance with minimal bursts.

With fewer socket locks, the maximum throughput should increase. The
tests in Figure 5.23 were executed with a netem limit of 1000, resulting in
losses during the Slow Start, hence a distinct Slow Start conclusion.

The peak throughput, both with and without delayed ACKs, is depicted
in Figure 5.24. The results indicate that the peak stable throughput with
delayed ACKSs is approximately 33% higher, reaching values close to 1000
Mbps, compared to about 750 Mbps without them.

We have further verified that the processing of ACKs can indeed pose

77

1.0f

0.9}

0.8}

0.7}

0.6}

CDF

0.5}
0.4}
0.3}
0.2}
0.1}
0.0

0 5 10 15 20 25 30

Time (microseconds)

Figure 5.25: CDF of the time it takes to process an ack.

a constraint. When transmitting at 750 Mbps with packets that are
1500 bytes each, TCP needs to dispatch 62500 packets every second.
This means the transmission timer is triggered every 16 us. To draw a
comparison with the time it takes for ACK processing, we clocked the
function tcp_rcv_established on the sender’s end, which is responsible
for managing incoming packets. From over 25,000 timings, we found the
mean duration to be 6 us and the median to be 5 us. Looking at Figure 5.25,
which presents these timings, roughly 5% of the recorded times surpassed
15 us in processing. This highlights that there are instances when the
transmission timer expires towards the upper limit of the ACK processing
duration range. Hence, there are situations where ACK processing hasn’t
concluded by the time the timer expires, and this occurrence grows more
common at increased speeds, like at 1 Gbit/s where the timer would expire
every 12 us.

5.6 Optimizations

5.6.1 Double packet drops

We experienced that the standard calculation of the pacing time (the time
between each packet transmission) during Congestion Avoidance was too
aggressive.

When developing and testing the algorithm, we saw a pattern of multiple
packet drops per recovery event. These double drops did not always occur,
but they were a common occurrence nonetheless. Figure 5.26 displays this
behavior. In this figure, we see two retransmissions of different packets,
indicated by the two decreases on the sequence number y-axis. Keep in

78

1le6 60

w
W
o

w
N
Ul

W
=
Ul

255 2.60 2.65 2.70 2.75 2.80 2.85 2090
Time (seconds)

Normalized Sequence Number
w
N
o
(

Figure 5.26: Plot showcasing the sequence numbers and RTT over time
where a double drop occurs. When looking at this diagram, the drops in
the sequence number line indicate a retransmit. Parameters used: a single
flow, 30 ms RTT, 10Mbit link and 1xBDP buffer.

mind that the packet drops occur an RTT before the retransmissions. We
see the initial packet drop causes the RTT to drop slightly. The RTT then
proceeds to increase until another drop occurs about an RTT later. At first,
we thought this was related to recovery being too aggressive, however, this
was proven not to be the case.

After analyzing the packet traces further, we concluded that the second
drop did not occur while TCP was in recovery, but rather in Congestion
Avoidance. The packet traces showed that the DupACKs for the first
drop arrived directly after the second dropped packet was transmitted, as
displayed in Figure 5.27. This tells us that the second dropped packet was
transmitted before the first loss was discovered by TCP, meaning TCP was
in Congestion Avoidance at the time of transmission.

This makes sense, as the TBTCP sending rate grows by quite precisely 1
packet per RTT. We now know that the second packet drop occurs within
one RTT from the first drop. We suspect that the first packet drop drained
the queue sufficiently for more packets to be received. This explains why
the packet drops do not occur subsequently, but rather with a difference of
an RTT. As to why these double drops do not always occur, we theorize that
small fluctuations introduced by sources like the timer, propagation delay,
queue processing, queue alignment, etc. are sufficient to prevent the queue
from filling up completely. It is also important to note, that even though
two packets were dropped, only a single congestion event occurred.

Mitigating double drops

What the above analysis tells us, is that TBTCP is very proficient at utilizing
the queue capacity; we attribute this to TBTCP pacing every single packet.

79

leb

w
w
o

Second packet drop

w
N)
wun

w
)
o

y x x Xx W E B2 EEEESEEEEEEE NN

x X
x x %

x X

’\ Retransmission for the first
dropped packet

w
=
o

ACKs
= DUPACKs
- Data packets

3.9%00 2705 2.710 2.715 2.720 2.725 2.730 2.735 2.740
Time (seconds)

Normalized TCP Number
w
=
wl

w
o
o

Figure 5.27: Time sequence plot showing data packets, ACKs and
DupACKSs, to display the timing of the second packet drop. The displayed
flow is the same as in Figure 5.26.

The transmission of one more packet before the sender receives notification
of a previous packet loss (through DupACKs) is sufficient to overload the
receiver, leading to another lost packet. We suspect that these delayed
congestion signals are especially prone to occur with a single flow in a
controlled environment, as there are not many external factors that affect
queue growth.

To mitigate the double drops, we can modify the rate increase function to
slow down the rate increase. We assumed that ideally, we would allow
the rate to grow a tiny bit slower than one packet per RTT to prevent
double drops. To achieve this, we propose a modification to the existing
rate increase function.

The current function is given by the following as defined in algorithm 1:
(sqrt((8« (n+k)—7))/2) — (sqrt((8xn—7))/2)
Where k represents the many time steps to move ahead, and 7 is the

sequence number Ntx.

To adjust the rate of increase, we can introduce a minor multiplicative
factor, for example, 1.000001:
(sqrt((8« (n+k) —7)) *1.000001/2) — (sqrt((8xn —7))/2)

This modification effectively slows down the rate by a small fraction. From
our experiments, this seemed to be sufficient to mitigate the double drops.

80

6.950 6975 7.000 7.025 7.050 7.075 7.100 >0

Time (seconds)

é le7 -60.0

S5 4.20

=2

) -59.5

O _
()]

8 4.15 =

o -59.0—

A E

5 / =

84.10 -58.5

o

£

(@]

=2

Figure 5.28: Plot showcasing the sequence numbers and RTT over time
with a modified rate increase. Parameters used: a single flow, 30 ms RTT,
50Mbit link and 1xBDP buffer.

This is displayed in Figure 5.28, where a single loss event is plotted. We
see that in this case, there is also a preliminary drop in the RTT from the
packet drop. The RTT then proceeds to increase until a congestion event
is detected, rather than dropping a second packet. It is important to note
that this factor is somewhat arbitrary, and could be fine-tuned further to
optimize better queue utilization while preventing a double drop.

81

Chapter 6

Conclusion

This chapter summarizes the findings of this thesis, including answering
the research questions and giving recommendations for further work.

6.1 Research findings

In this section, we will summarize how we have answered the research
questions section 1.3 from the introduction.

Replacing established TCP mechanisms

This was detailed in section 4.3, where we modified the Linux kernel TCP
stack. Here, we describe how we disabled the standard sending triggers
of TCP. This ensured that all transmissions in Slow Start and Congestion
avoidance were initiated from the TBTCP congestion control module.
These sending triggers where disabled only if the TBTCP congestion
control module is active, thereby maintaining compatibility with other
congestion control modules.

Pacing with a High-resolution timer

We accomplished this by expanding the congestion control module API
with a new callback, event_handler. We associated this callback with
a high-resolution timer. When the timer fired, the TBTCP module was
notified that it was time to transmit a new packet. After a packet
transmission, the timer was requeued with a timestamp calculated from
the current sending rate.

The timestamp calculation was achieved by performing floating-point
operations and estimations as described in section 4.5.

82

Giving control to TCP modules

Our implementation enabled initiation of packet transmissions directly
from the TBTCP module. This was done by calling tcp_write_xmit from
the module, instead of relying on the ACK-clock to initiate transmissions
from the TCP stack.

Delegate recovery handling to TCP

This was accomplished by notifying the TBTCP module of TCP state
transitions through the congestion control module API. Transmissions from
the TBTCP module were disabled when TCP was in recovery or loss.

When the TCP state transitions from recovery to Congestion Avoidance,
a synchronization step was performed. The synchronization process
involved finding the appropriate sending rate based on the amount of
in-flight packets at the time where the lost packet was transmitted. This
required maintaining a list of in-flight packets along with a record of the
in-flight packet count at the time each packet was transmitted.

Performance

When evaluating the implementation we found that the per-packet pacing
resulted in a very consistent pacing curve. When comparing TBTCP pacing
with other pacing schemes as in Figure 5.4, TBTCP appears a lot smoother.
TBTCP also paces the initial window of packets, which the other pacing
schemes did not.

A consequence of this fine-grained per-packet pacing makes TBTCP
proficient at utilizing the available queue capacity. This was demonstrated
in subsection 5.6.1, where a rate increase of precisely one packet per RTT
was enough to make double packet-drops a common occurrence.

We were able to achieve fairly stable throughput values up to 750 Mbps
without delayed ACK enabled, and up to 1000 Mpbs with delayed ACK
enabled. This is further described in subsection 5.5.4.

6.2 Further work

6.2.1 Evaluation in a heterogenous flow environment

The evaluation of our implementation was limited in terms of comparing
performance and behavior in an environment with other TCP flows. In-
stead, our evaluation focused on verifying the capabilities that was expec-
ted of our algorithm according to the TBTCP specification in chapter 3, in
addition to throughput metrics. As such, the tests were performed in an
isolated environment with a single flow.

83

A continuation of the evaluation would be to assess our implementation in
a heterogenous flow environment.

6.2.2 Implementing loss recovery

As our implementation only concerned itself with the Slow Start and
Congestion Avoidance phases of TCP, the next step would be to implement
loss recovery. The TBTCP research paper (to be published at the time of
writing) describes this algorithm.

6.2.3 Pace from hardware

Our implementation utilizes high-resolution software timers within the
Linux kernel to pace packets. As we reached higher speeds, we observed
undefined and bursty behavior. We believe this is mainly due to overhead
introduced by the timer and ACK-processing detailed in section 5.5.

A suggestion to improve on this is to perform the pacing from hardware,
instead of using software timers. This would ideally require an implement-
ation where congestion control modules can control the rate of pacing by
passing per-packet transmission timestamps to the hardware. Such an im-
plementation could be deployed in a hardware Network Interface Card
(NIC). Work related to performing pacing from a NIC can be found in [63]
and [75].

6.2.4 Minimizing the impact of pacing overhead

In subsection 5.5.4, we detailed the maximum throughput achieved. We
suspected the limiting factor was related to the overhead from processing
ACKs in addition to the constraint of only transmitting a single packet per
timer expiry.

To optimize this, we would have to either spend less time sending or
minimize time spent processing ACKs. The only optimizations that can
be done by TBTCP is to optimize sending. To achieve this, a suggestion
would be to fire fewer timer events, such that multiple packets can be sent
per expiration event. To preserve the per-packet pacing on lower sending
rates, this feature could be enabled only after the sending rate reaches a
certain threshold.

6.3 Recommendations

For those who seek to implement their own TCP module in a custom Linux
kernel, or continue our work, we have the following recommendations to
give a head start.

84

Use bare metal

When testing our custom Linux kernel, we initially used a virtual machine.
This worked for initial testing, however, to test the actual performance of
an implementation, we recommend using bare metal. In our experience,
the performance and behavior observed when using virtual machines are
not representable of testing on bare metal.

Automate the testing setup

We automated the testing process through a collection of scripts. These
scripts did everything from pushing source code to the test machine,
compiling, installing, rebooting and running the transmissions. We
recommend creating such a pipeline for kernel deployment and testing,
as it significantly reduces the manual labor needed during development.

Disable offloading mechanisms

It is in a developer’s best interest to minimize external factors that may
affect the results of tests. We recommend disabling the various hardware
offloading mechanisms on the test machine. One should also be aware of
TCP-specific mechanisms like the use of ECNs, SACKSs and delayed ACKs.
If the implementation has high CPU demands, enabling delayed ACKs
should be considered to limit the ACK processing overhead.

Tune the TCP socket

Be aware of application overhead when running high-bandwidth tests.
When using iperf in combination with a small socket buffer, we exper-
ienced large gaps in the transmission pattern. We theorize this was due
to the application not being able to keep up with the transmission rate.
We mitigated this issue partially by increasing the socket buffer sizes.
In general, the dedicated socket memory should be tuned to match the
bandwidth-delay product demands.

Netem on higher speeds

When testing our implementation at higher speeds, we experienced
unexpected packet loss. When inspecting further, we found that the
packet loss occurred in the netem qdisc. To prevent this, we caution
to remember to increase the netem limit so that it corresponds to the
buffering requirements as described in subsection 5.5.3.

85

6.4 Closing remarks

Benefits Disadvantages

High queue utilization Overhead from per-packet pacing
Only requires implementation on

the sender-side

Pluggable increase function Limited throughput capabilities
Minimized burstiness

Pacing the Initial Window

Table 6.1: Highlighted benefits and disadvantages of the TBTCP imple-
mentation.

Implementing a timer-based TCP congestion control can provide several
benefits as displayed in Table 6.1 . Primarily, the inherent per-packet pacing
yields a notably smoother traffic pattern compared to other TCP pacing
variants. It can be adopted with ease, as it would require implementation
only on the client-side. Furthermore, the increase function is a simple
replaceable equation making it versatile in the case where a different
increase behavior is desired.

Among the drawbacks observed were limited throughput capabilities
caused by the overhead from ACK processing and per-packet pacing.
We achieved throughput values close to 1000 Mbps with only minor
fluctuations. Past this point, we noticed bursty and undefined behavior.

We have outlined some possible solutions to these problems in the previous
sections, and remain excited to see how this algorithm will perform if these
issues are addressed.

In summary, we have implemented and evaluated a timer-based TCP con-
gestion control module in the Linux kernel. We evaluated its capabilities
and limitations both in regards to the TBTCP specification and throughput
metrics. Through our research, we have shown that the implementation
was feasible and provided benefits, however, there are still discoveries to
be made regarding how such an implementation would perform in a real-
world scenario.

86

Appendix A

Source code

The modified Linux kernel can be retrieved from

https:/ /github.com/andreaslimidev /tbtcp-linux.

The most significant changes are located in net/ipv4 directory, most
notably the files tcp_tb.c, tcp_output.c and tcp_input.c.

87

https://github.com/andreaslimidev/tbtcp-linux

Code references

[16]

[24]

[30]

[32]

[33]

[35]

[36]

[37]

linux-kernel-5.19 | TCP_INIT_CWND. commit. Accessed on April
8, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / include / net / tcp . h #
L231.

linux-kernel-5.19 | tcp_cwnd_reduction. commit. Accessed on
March 2, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp input.c#
L2614.

linux-kernel-5.19 | cubic hystart_update. commit. Accessed
on October 16, 2023. URL: https:/ /github.com /torvalds /linux /blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp cubic.c#
L386C55-L387CL.

linux-kernel-5.19 | tcp_states.h. commit. Accessed on April
25, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /include /net/tcp states.
h#L12.

linux-kernel-5.19 | CA states. commit. Accessed on April 25,
2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp _input.c#
L2224.

linux-kernel-5.19 | __tcp_transmit_skb. commit. Accessed on
November 1, 2023. URL: https: / / github.com /torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L1406C3-L1406C3.

linux-kernel-5.19 | tcp.h:struct tcp_congestion_ops.commit.
Accessed on March 1, 2023. URL: https://github.com /torvalds/linux/
blob / 3d7cb6b04¢3f3115719235cc6866b10326de34cd / include / net / tcp .
h#L1053.

linux-kernel-5.19 | inet_connection_sock. commit. Accessed
on March 2, 2023. URL: https : / / github . com / torvalds / linux /
blob /3d7cb6b04c3f3115719235cc6866b10326de34cd /include /net /inet
connection sock.h#L135.

88

https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L231
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L231
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L231
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2614
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2614
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2614
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cubic.c#L386C55-L387C1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cubic.c#L386C55-L387C1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cubic.c#L386C55-L387C1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp_states.h#L12
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp_states.h#L12
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp_states.h#L12
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2224
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2224
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2224
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1406C3-L1406C3
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1406C3-L1406C3
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1406C3-L1406C3
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L1053
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L1053
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/tcp.h#L1053
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/inet_connection_sock.h#L135
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/inet_connection_sock.h#L135
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/inet_connection_sock.h#L135

[38] linux-kernel-5.19 | tcp_enter_loss.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp input.c#
L2154.

[39] linux-kernel-5.19 | tcp_set_ca_state.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp cong.c#
L44.

[40] linux-kernel-5.19 | tcp_cong_control.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp input.c#
L3902.

[41] linux-kernel-5.19 | tcp_try_undo_loss. commit. Accessed on
March 2, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp _input.c#
L2574.

[42] linux-kernel-5.19 | tcp_try_undo_recovery. commit. Accessed
on March 2, 2023. URL: https: / / github . com /torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp input.c#
L2529.

[43] linux-kernel-5.19 | tcp_reno_undo_cwnd. commit. Accessed on
March 2, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp cong.c#
L473.

[44] 1linux-kernel-5.19 | tcp_input.c:update_pacing_rate. commit.
Accessed on February 24, 2023. URL: https:/ / github.com /torvalds /
linux / blob / 3d7cb6b04c3f3115719235cc6866b10326de34cd / net / ipv4 /
tcp input.c#L897.

[45] linux-kernel-5.19 | sch_fq.c. commit. Accessed on March 1,
2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /sched /sch fq.c#
L1.

[46] linux-kernel-5.19 | sk_pacing_rate.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / include / net / sock . h #
L460.

[47] 1linux-kernel-5.19 | bbr_init. commit. Accessed on April 25,
2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp bbr.c#
L1077.

[48] linux-kernel-5.19 | tcp_pacing_check.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L2467.

89

https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2154
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2154
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2154
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L44
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L44
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L44
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L3902
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L3902
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L3902
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2574
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2574
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2574
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2529
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2529
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L2529
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L473
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L473
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_cong.c#L473
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L897
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L897
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L897
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L1
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/sock.h#L460
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/sock.h#L460
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/net/sock.h#L460
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_bbr.c#L1077
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_bbr.c#L1077
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_bbr.c#L1077
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2467
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2467
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2467

[49] 1linux-kernel-5.19 | tcp_update_skb_after_send. commit. Ac-
cessed on March 2, 2023. URL: https://github.com/torvalds/linux/blob/
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#11198.

[50] linux-kernel-5.19 | tcp_pace_kick. commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L1187.

[52] linux-kernel-5.19 | tcp_small_queue_check. commit. Accessed
on March 2, 2023. URL: https: / / github . com /torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
#1.2680.

[53] linux-kernel-5.19 | sch_fq.c. commit. Accessed on June 1,
2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /sched /sch fq.c#
L135.

[56] linux-kernel-5.19 | enum hrtimer_mode. commit. Accessed on
March 10, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / include / linux / hrtimer .
h#L27.

[58] linux-kernel-5.19 | tcp_tso_autosize.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L1968.

[39] 1linux-kernel-5.19 | tcp_sendmsg_locked. commit. Accessed on
March 2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net/ipv4 /tcp.c#£L1192.

[60] linux-kernel-5.19 | tcp_data_send_check. commit. Accessed on
March 2, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /net /ipv4 /tcp input.c#
L5486.

[61] linux-kernel-5.19 | tcp_write_xmit.commit. Accessed on March
2, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L2599.

[62] linux-kernel-5.19 | __tcp_transmit_skb. commit. Accessed on
March 2, 2023. URL: https: / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd / net /ipv4 /tcp output.
c#L1237.

[65] linux-kernel-5.19 | x86 fpu api.h. commit. Accessed on March
8, 2023. URL: https : / / github . com / torvalds / linux / blob /
3d7cb6b04c3f3115719235cc6866b10326de34cd /arch /x86 /include /asm /
fpu/api.h#L18.

90

https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1198
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1198
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1198
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1187
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1187
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1187
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2680
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2680
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2680
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L135
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L135
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/sched/sch_fq.c#L135
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/linux/hrtimer.h#L27
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/linux/hrtimer.h#L27
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/include/linux/hrtimer.h#L27
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1968
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1968
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1968
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp.c#L1192
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp.c#L1192
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L5486
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L5486
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_input.c#L5486
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2599
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2599
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L2599
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1237
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1237
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/net/ipv4/tcp_output.c#L1237
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/arch/x86/include/asm/fpu/api.h#L18
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/arch/x86/include/asm/fpu/api.h#L18
https://github.com/torvalds/linux/blob/3d7cb6b04c3f3115719235cc6866b10326de34cd/arch/x86/include/asm/fpu/api.h#L18

Article references

(1]

(2]

3]

[9]

[10]

[11]

[12]

David Wei et al. “TCP pacing revisited’. In: Proceedings of IEEE
INFOCOM. Vol. 2. Citeseer. 2006, p. 3.

Elie F. Kfoury et al. ‘Enabling TCP Pacing using Programmable
Data Plane Switches’. In: 2019 42nd International Conference on
Telecommunications and Signal Processing (TSP). 2019, pp. 273-277.
DOI: 10.1109/TSP.2019.8768888.

Eric Dumazet. tcp: internal implementation for pacing. commit. Ac-
cessed on February 24, 2023. May 2017. URL: https: / / github.com/
torvalds/linux/commit/218af599fa635b107cfel0acf3249c4dfe5e4123.

Jim Gettys. ‘Bufferbloat: Dark Buffers in the Internet’. In: IEEE
Internet Computing 15.3 (2011), pp. 96-96. DOI: 10.1109/MIC.2011.56.

Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293. Aug.
2022. DOI: 10.17487 /RFC9293. URL: https://www.rfc-editor.org/info/
rfc9293.

Ethan Blanton, Dr. Vern Paxson and Mark Allman. TCP Congestion
Control. RFC 5681. Sept. 2009. DOI: 10.17487 / RFC5681. URL: https:
//www.rfc-editor.org/info/rfc5681.

Wikipedia contributors. Berkeley sockets — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 7-April-2023]. 2023. URL: https://en.wikipedia.
org/w/index.php?title=Berkeley sockets&oldid=1143831642.

socket. Section 2 of the Linux man-pages project. Linux man-pages
project. 2019. URL: https://man7.org/linux/man-pages/man2/socket.2.
html.

J. Nagle. RFC 896 - Congestion Control in IP/TCP Internetworks. Request
for Comments. Status: INFORMATIONAL. Jan. 1984. URL: https://
datatracker.ietf.org/doc/html/rfc896.

David Borman. TCP Options and Maximum Segment Size (MSS). REC
6691. July 2012. DOT: 10.17487 /RFC6691. URL: https://www.rfc-editor.
org/info/rfc6691.

Dr. Steve E. Deering and Jeffrey Mogul. Path MTU discovery. RFC
1191. Nov. 1990. DOI: 10.17487 / RFC1191. URL: https:/ /www . rfc-
editor.org/info/rfc1191.

J. Postel. RFC 792 - Internet Control Message Protocol. https : / /
datatracker.ietf.org/doc/html/rfc792. Sept. 1981.

91

https://doi.org/10.1109/TSP.2019.8768888
https://github.com/torvalds/linux/commit/218af599fa635b107cfe10acf3249c4dfe5e4123
https://github.com/torvalds/linux/commit/218af599fa635b107cfe10acf3249c4dfe5e4123
https://doi.org/10.1109/MIC.2011.56
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://en.wikipedia.org/w/index.php?title=Berkeley_sockets&oldid=1143831642
https://en.wikipedia.org/w/index.php?title=Berkeley_sockets&oldid=1143831642
https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc896
https://doi.org/10.17487/RFC6691
https://www.rfc-editor.org/info/rfc6691
https://www.rfc-editor.org/info/rfc6691
https://doi.org/10.17487/RFC1191
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc792

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

[29]

M. Mathis and J. Heffner. RFC 4821 - Packetization Layer Path MTU
Discovery. https:/ / datatracker.ietf.org /doc/html /rfc4821. Standards
Track. Mar. 2007.

R. Braden. RFC 1122 - Requirements for Internet Hosts - Communication
Layers. https://datatracker.ietf.org/doc/html/rfc1122. Oct. 1989.

Matt Sargent et al. Computing TCP's Retransmission Timer. REC 6298.
June 2011. DOI: 10.17487 /RFC6298. URL: https://www.rfc-editor.org/
info/rfc6298.

H.K. Jerry Chu et al. RFC6928 - Increasing TCP’s Initial Window. 2013.
URL: http://www.rfc-editor.org/rfc/rfc6928.txt.

Sally Floyd et al. TCP Selective Acknowledgment Options. RFC 2018.
Oct. 1996. DOI: 10.17487 /RFC2018. URL: https://www.rfc-editor.org/
info/rfc2018.

Ethan Blanton et al. A Conservative Loss Recovery Algorithm Based on
Selective Acknowledgment (SACK) for TCP. RFC 6675. Aug. 2012. DOI:
10.17487 /RFC6675. URL: https://www.rfc-editor.org/info/rfc6675.

Matt Mathis, Nandita Dukkipati and Yuchung Cheng. Proportional
Rate Reduction for TCP. RFC 6937. May 2013. DOI: 10.17487 /RFC6937.
URL: https://www.rfc-editor.org/info/rfc6937.

Y. Cheng M. Kukojo and M. Mathis. Use FlightSize instead of cwnd.
https://github.com/NTAP /rfc8312bis/issues/114. 2021.

Injong Rhee et al. CUBIC for Fast Long-Distance Networks. RFC 8312.
Feb. 2018. DOI: 10.17487 /RFC8312. URL: https://www.rfc-editor.org/
info/rfc8312.

David Borman et al. TCP Extensions for High Performance. RFC 7323.
Sept. 2014. DOI: 10.17487 /RFC7323. URL: https://www.rfc-editor.org/
info/rfc7323.

Van Jacobson. ‘Congestion avoidance and control’. In: ACM SIG-
COMM computer communication review 18.4 (1988), pp. 314-329.

Yuchung Cheng et al. The RACK-TLP Loss Detection Algorithm for TCP.
RFC 8985. Feb. 2021. DOTI: 10.17487 /RFC8985. URL: https://www.rfc-
editor.org/info/rfc8985.

Dominik Scholz et al. “Towards a deeper understanding of TCP
BBR congestion control’. In: 2018 IFIP networking conference (IFIP
networking) and workshops. IEEE. 2018, pp. 1-9.

Neal Cardwell et al. BBR Congestion Control. Internet-Draft draft-
cardwell-iccrg-bbr-congestion-control-02. Work in Progress. Internet
Engineering Task Force, Mar. 2022. 66 pp. URL: https:/ /datatracker.
ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control /02/.

Sangtae Ha, Injong Rhee and Lisong Xu. ‘CUBIC: a new TCP-friendly
high-speed TCP variant’. In: ACM SIGOPS operating systems review
42.5 (2008), pp. 64-74.

92

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1122
https://doi.org/10.17487/RFC6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
http://www.rfc-editor.org/rfc/rfc6928.txt
https://doi.org/10.17487/RFC2018
https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://doi.org/10.17487/RFC6675
https://www.rfc-editor.org/info/rfc6675
https://doi.org/10.17487/RFC6937
https://www.rfc-editor.org/info/rfc6937
https://github.com/NTAP/rfc8312bis/issues/114
https://doi.org/10.17487/RFC8312
https://www.rfc-editor.org/info/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://doi.org/10.17487/RFC7323
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://doi.org/10.17487/RFC8985
https://www.rfc-editor.org/info/rfc8985
https://www.rfc-editor.org/info/rfc8985
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/

[31]

[34]

[51]

[54]

[55]

[57]

[63]

[64]

[66]

[67]

[68]

[69]

[70]

[71]

Amit Aggarwal, Stefan Savage and Thomas Anderson. ‘Understand-
ing the performance of TCP pacing’. In: Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat. No.
00CH37064). Vol. 3. IEEE. 2000, pp. 1157-1165.

Sally Floyd, Dr. K. K. Ramakrishnan and David L. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept. 2001.
DOTI: 10.17487 /RFC3168. URL: https://www.rfc-editor.org/info/rfc3168.

Carlo Augusto Grazia, Martin Klapez and Maurizio Casoni. “The
New TCP Modules on the Block: A Performance Evaluation of TCP
Pacing and TCP Small Queues’. In: IEEE Access 9 (2021), pp. 129329-
129336. DOI: 10.1109/ACCESS.2021.3113891.

Neal Cardwell. Re: How to comfirm BBRvl works with HTB+FQ?
Google Groups: BBR Development. Available at: https: / / groups.
google.com/g/bbr-dev/c/ADbllzcpPOw/m /dIZGuuycBgAJ. 2021.

Thomas Gleixner and Ingo Molnar. hrtimers - subsystem for high-
resolution kernel timers. Accessed: 2023-03-10. URL: https://docs.kernel.
org/timers/hrtimers.html.

Yuchung Cheng and Neal Cardwell. ‘Making linux TCP fast’. In:
Netdev conference. 2016.

Salvatore Pontarelli, Giuseppe Bianchi and Michael Welzl. ‘A Pro-
grammable Hardware Calendar for High Resolution Pacing’. In: 2018
IEEE 19th International Conference on High Performance Switching and
Routing (HPSR). 2018, pp. 1-6. DOI: 10.1109/HPSR.2018.8850731.

Linus Torvalds. Mail from Linus speaking on FPU enabling. mail.
Accessed on March 2, 2023. URL: https:/ /lore.kernel.org/all / Pine.
LNX.4.44.0303101203330.2722-100000@home.transmeta.com/.

Romerio. fastapprox: fast approximations of mathematical functions. https:
/ / github .com / romeric / fastapprox. 2017. URL: https: / / github.com /
romeric/fastapprox.

Wikipedia contributors. Methods of computing square roots. https://en.
wikipedia.org/wiki/Methods of computing square roots. Accessed:
October 5, 2023. Wikipedia, The Free Encyclopedia, 2023. URL: https:
//en.wikipedia.org/wiki/Methods of computing square roots.
Oracle. Documentation for Solaris. Accessed: 2023-10-06. 2023. URL:
https://docs.oracle.com/cd/E18752 01/html/817-5477 /epmpv.html#:
~ :text = SSE2 % 20instructions % 20are % 20an % 20extension , precision %
20floating%2Dpoint%20conversion%20instructions.

iperf. Section 1 of the iperf Linux man page. die.net. 2023. URL: https:
//linux.die.net/man/1/iperf.

tc-netem(8) - Linux man page. Accessed: 2023-11-07. 2023. URL: https:
//man7.org/linux/man-pages/man8/tc-netem.8.html.

tcpdump. Section 8 of the tcpdump Linux man page. die.net. 2023.
URL: https://linux.die.net/man/8/tcpdump.

93

https://doi.org/10.17487/RFC3168
https://www.rfc-editor.org/info/rfc3168
https://doi.org/10.1109/ACCESS.2021.3113891
https://groups.google.com/g/bbr-dev/c/ADbl1zcpP0w/m/dIZGuuycBgAJ
https://groups.google.com/g/bbr-dev/c/ADbl1zcpP0w/m/dIZGuuycBgAJ
https://docs.kernel.org/timers/hrtimers.html
https://docs.kernel.org/timers/hrtimers.html
https://doi.org/10.1109/HPSR.2018.8850731
https://lore.kernel.org/all/Pine.LNX.4.44.0303101203330.2722-100000@home.transmeta.com/
https://lore.kernel.org/all/Pine.LNX.4.44.0303101203330.2722-100000@home.transmeta.com/
https://github.com/romeric/fastapprox
https://github.com/romeric/fastapprox
https://github.com/romeric/fastapprox
https://github.com/romeric/fastapprox
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://docs.oracle.com/cd/E18752_01/html/817-5477/epmpv.html#:~:text=SSE2%20instructions%20are%20an%20extension,precision%20floating%2Dpoint%20conversion%20instructions
https://docs.oracle.com/cd/E18752_01/html/817-5477/epmpv.html#:~:text=SSE2%20instructions%20are%20an%20extension,precision%20floating%2Dpoint%20conversion%20instructions
https://docs.oracle.com/cd/E18752_01/html/817-5477/epmpv.html#:~:text=SSE2%20instructions%20are%20an%20extension,precision%20floating%2Dpoint%20conversion%20instructions
https://linux.die.net/man/1/iperf
https://linux.die.net/man/1/iperf
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://linux.die.net/man/8/tcpdump

[72]

[73]

[74]

[75]

Sebastian Zander and Grenville Armitage. ‘Minimally-intrusive fre-
quent round trip time measurements using Synthetic Packet-Pairs’.
In: 38th Annual IEEE Conference on Local Computer Networks. 2013,
Pp. 264-267. DOI: 10.1109/LCN.2013.6761245.

Kernel.org. Documentation/sysctl/net.txt. 2023. URL: https: / / www .
kernel.org/doc/Documentation/sysctl/net.txt.

Stephen Hemminger. Re: [Netem] TBF burst size. https : / / lists .
linuxfoundation . org / pipermail / netem / 2007 - March / 001094 . html.
Accessed: 2023-11-07. Mar. 2007.

Ahmed Saeed et al. “Carousel: Scalable Traffic Shaping at End-Hosts’.
In: ACM SIGCOMM 2017.2017.

94

https://doi.org/10.1109/LCN.2013.6761245
https://www.kernel.org/doc/Documentation/sysctl/net.txt
https://www.kernel.org/doc/Documentation/sysctl/net.txt
https://lists.linuxfoundation.org/pipermail/netem/2007-March/001094.html
https://lists.linuxfoundation.org/pipermail/netem/2007-March/001094.html

	Introduction
	Problem statement
	Contributions
	Research questions
	Organization
	Collaboration

	Background
	Congestion
	The Transmission Control Protocol (TCP)
	Overview
	Congestion Control
	Enhancements
	Congestion Control Algorithms

	Pacing
	TCP in the Linux kernel

	Timer-based TCP
	General design
	Core functions
	Differences from TCP

	Linux implementation
	Scope
	Strategies
	Modifying the network stack
	Event handler callback
	Disable sending triggers

	TBTCP module
	Private fields
	Utility
	TCP callbacks
	Other functions

	Implementing floating-point support
	Configurable module parameters

	Implementation assessment
	Testbed
	Testing and measurement tools
	Experiments
	Pacing behaviour
	Stalling logic

	Backoff
	Pursuing peak throughput
	Timer overhead
	iPerf buffer sizes
	Experiencing loss without reaching link speed
	ACK Processing

	Optimizations
	Double packet drops

	Conclusion
	Research findings
	Further work
	Evaluation in a heterogenous flow environment
	Implementing loss recovery
	Pace from hardware
	Minimizing the impact of pacing overhead

	Recommendations
	Closing remarks

	Source code

